NDRG1 acts as an oncogene in triple-negative breast cancer and its loss sensitizes cells to mitochondrial iron chelation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38983911
PubMed Central
PMC11231402
DOI
10.3389/fphar.2024.1422369
PII: 1422369
Knihovny.cz E-zdroje
- Klíčová slova
- GSK3α/β, NDRG1, breast cancer, mitoDFO, mitoDFX, mitochondrial iron chelation, oncogene, tumor suppressor,
- Publikační typ
- časopisecké články MeSH
Multiple studies indicate that iron chelators enhance their anti-cancer properties by inducing NDRG1, a known tumor and metastasis suppressor. However, the exact role of NDRG1 remains controversial, as newer studies have shown that NDRG1 can also act as an oncogene. Our group recently introduced mitochondrially targeted iron chelators deferoxamine (mitoDFO) and deferasirox (mitoDFX) as effective anti-cancer agents. In this study, we evaluated the ability of these modified chelators to induce NDRG1 and the role of NDRG1 in breast cancer. We demonstrated that both compounds specifically increase NDRG1 without inducing other NDRG family members. We have documented that the effect of mitochondrially targeted chelators is at least partially mediated by GSK3α/β, leading to phosphorylation of NDRG1 at Thr346 and to a lesser extent on Ser330. Loss of NDRG1 increases cell death induced by mitoDFX. Notably, MDA-MB-231 cells lacking NDRG1 exhibit reduced extracellular acidification rate and grow slower than parental cells, while the opposite is true for ER+ MCF7 cells. Moreover, overexpression of full-length NDRG1 and the N-terminally truncated isoform (59112) significantly reduced sensitivity towards mitoDFX in ER+ cells. Furthermore, cells overexpressing full-length NDRG1 exhibited a significantly accelerated tumor formation, while its N-terminally truncated isoforms showed significantly impaired capacity to form tumors. Thus, overexpression of full-length NDRG1 promotes tumor growth in highly aggressive triple-negative breast cancer.
Faculty of Sciences BIOCEV Research Centre Charles University Vestec Czechia
Faculty of Sciences Charles University Prague Czechia
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Research Centre Vestec Czechia
Zobrazit více v PubMed
Bandyopadhyay S., Pai S. K., Hirota S., Hosobe S., Takano Y., Saito K., et al. (2004). Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene 23 (33), 5675–5681. 10.1038/sj.onc.1207734 PubMed DOI
Basuli D., Tesfay L., Deng Z., Paul B., Yamamoto Y., Ning G., et al. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36 (29), 4089–4099. 10.1038/onc.2017.11 PubMed DOI PMC
Boukalova S., Stursa J., Werner L., Ezrova Z., Cerny J., Bezawork-Geleta A., et al. (2016). Mitochondrial targeting of metformin enhances its activity against pancreatic cancer. Mol. Cancer Ther. 15 (12), 2875–2886. 10.1158/1535-7163.MCT-15-1021 PubMed DOI
Chekmarev J., Azad M. G., Richardson D. R. (2021). The oncogenic signaling disruptor, NDRG1: molecular and cellular mechanisms of activity. Cells 10 (9), 2382. 10.3390/cells10092382 PubMed DOI PMC
Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D. R. (2012). The iron chelators Dp44mT and DFO inhibit TGF-β-induced epithelial-mesenchymal transition via up-regulation of N-Myc downstream-regulated gene 1 (NDRG1). J. Biol. Chem. 287 (21), 17016–17028. 10.1074/jbc.M112.350470 PubMed DOI PMC
Concordet J. P., Haeussler M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46 (W1), W242-W245–W5. 10.1093/nar/gky354 PubMed DOI PMC
de Nonneville A., Finetti P., Mamessier E., Bertucci F. (2022). RE: NDRG1 in aggressive breast cancer progression and brain metastasis. J. Natl. Cancer Inst. 114 (7), 1046–1047. 10.1093/jnci/djac031 PubMed DOI PMC
Ding W., Zhang J., Yoon J. G., Shi D., Foltz G., Lin B. (2012). NDRG4 is downregulated in glioblastoma and inhibits cell proliferation. OMICS 16 (5), 263–267. 10.1089/omi.2011.0146 PubMed DOI PMC
Ellen T. P., Ke Q., Zhang P., Costa M. (2008). NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis 29 (1), 2–8. 10.1093/carcin/bgm200 PubMed DOI
Fang B. A., Kovacevic Z., Park K. C., Kalinowski D. S., Jansson P. J., Lane D. J., et al. (2014). Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim. Biophys. Acta 1845 (1), 1–19. 10.1016/j.bbcan.2013.11.002 PubMed DOI
Fotovati A., Fujii T., Yamaguchi M., Kage M., Shirouzu K., Oie S., et al. (2006). 17Beta-estradiol induces down-regulation of Cap43/NDRG1/Drg-1, a putative differentiation-related and metastasis suppressor gene, in human breast cancer cells. Clin. Cancer Res. 12 (10), 3010–3018. 10.1158/1078-0432.CCR-05-1962 PubMed DOI
Fuentes-Retamal S., Sandoval-Acuna C., Peredo-Silva L., Guzman-Rivera D., Pavani M., Torrealba N., et al. (2020). Complex mitochondrial dysfunction induced by TPP(+)-Gentisic acid and mitochondrial translation inhibition by doxycycline evokes synergistic lethality in breast cancer cells. Cells 9 (2), 407. 10.3390/cells9020407 PubMed DOI PMC
Geleta B., Park K. C., Jansson P. J., Sahni S., Maleki S., Xu Z., et al. (2021). Breaking the cycle: targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J. 35 (2), e21347. 10.1096/fj.202002279R PubMed DOI
Ghalayini M. K., Dong Q., Richardson D. R., Assinder S. J. (2013). Proteolytic cleavage and truncation of NDRG1 in human prostate cancer cells, but not normal prostate epithelial cells. Biosci. Rep. 33 (3), e00042. 10.1042/BSR20130042 PubMed DOI PMC
Guan X. (2015). Cancer metastases: challenges and opportunities. Acta Pharm. Sin. B 5 (5), 402–418. 10.1016/j.apsb.2015.07.005 PubMed DOI PMC
Guo D. D., Xie K. F., Luo X. J. (2020). Hypoxia-induced elevated NDRG1 mediates apoptosis through reprograming mitochondrial fission in HCC. Gene 741, 144552. 10.1016/j.gene.2020.144552 PubMed DOI
Gutierrez E., Richardson D. R., Jansson P. J. (2014). The anticancer agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: persistent induction of autophagosome synthesis and impairment of lysosomal integrity. J. Biol. Chem. 289 (48), 33568–33589. 10.1074/jbc.M114.599480 PubMed DOI PMC
Hu W., Fan C., Jiang P., Ma Z., Yan X., Di S., et al. (2016). Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer. Oncotarget 7 (1), 209–223. 10.18632/oncotarget.6228 PubMed DOI PMC
Ito H., Watari K., Shibata T., Miyamoto T., Murakami Y., Nakahara Y., et al. (2020). Bidirectional regulation between NDRG1 and GSK3β controls tumor growth and is targeted by differentiation inducing factor-1 in glioblastoma. Cancer Res. 80 (2), 234–248. 10.1158/0008-5472.CAN-19-0438 PubMed DOI
Jadhav S. B., Sandoval Acuña C., Pacior Pampin Y., Klanicova K., Blazkova K., Sedlacek R., et al. (2024). Mitochondrially targeted deferasirox kills cancer cells via simultaneous iron deprivation and ferroptosis induction. bioRxiv. 2024, 575692. 10.1101/2024.01.17.575692 DOI
Jandrey E. H. F., Moura R. P., Andrade L. N. S., Machado C. L., Campesato L. F., Leite K. R. M., et al. (2019). NDRG4 promoter hypermethylation is a mechanistic biomarker associated with metastatic progression in breast cancer patients. NPJ Breast Cancer 5, 11. 10.1038/s41523-019-0106-x PubMed DOI PMC
Jing J. S., Li H., Wang S. C., Ma J. M., Yu L. Q., Zhou H. (2018). NDRG3 overexpression is associated with a poor prognosis in patients with hepatocellular carcinoma. Biosci. Rep. 38 (6). 10.1042/BSR20180907 PubMed DOI PMC
Jobe N. P., Zivicova V., Mifkova A., Rosel D., Dvorankova B., Kodet O., et al. (2018). Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem Cell. Biol. 149 (5), 503–516. 10.1007/s00418-018-1650-4 PubMed DOI
Joshi V., Stacey A., Feng Y. F., Kalita-de Croft P., Duijf P. H. G., Simpson P. T., et al. (2024). NDRG1 is a prognostic biomarker in breast cancer and breast cancer brain metastasis. J. Pathol. Clin. Res. 10 (2). 10.1002/2056-4538.12364 DOI
Jung M., Mertens C., Tomat E., Brune B. (2019). Iron as a central player and promising target in cancer progression. Int. J. Mol. Sci. 20 (2), 273. 10.3390/ijms20020273 PubMed DOI PMC
Keberle H. (1964). The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. N. Y. Acad. Sci. 119, 758–768. 10.1111/j.1749-6632.1965.tb54077.x PubMed DOI
Kim M. C., Park M. H., Kang S. H., Bae Y. K. (2019). NDRG3 protein expression is associated with aggressive biologic phenotype and unfavorable outcome in patients with invasive breast cancer. Int. J. Clin. Exp. Pathol. 12 (10), 3886–3893. PubMed PMC
Kim M. J., Lim J., Yang Y., Lee M. S., Lim J. S. (2014). N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling. Cancer Lett. 354 (1), 33–42. 10.1016/j.canlet.2014.06.023 PubMed DOI
Kloten V., Schlensog M., Eschenbruch J., Gasthaus J., Tiedemann J., Mijnes J., et al. (2016). Abundant NDRG2 expression is associated with aggressiveness and unfavorable patients' outcome in basal-like breast cancer. PLoS One 11 (7), e0159073. 10.1371/journal.pone.0159073 PubMed DOI PMC
Kovacevic Z., Richardson D. R. (2006). The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis 27 (12), 2355–2366. 10.1093/carcin/bgl146 PubMed DOI
Kovacevic Z., Sivagurunathan S., Mangs H., Chikhani S., Zhang D., Richardson D. R. (2011). The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. Carcinogenesis 32 (5), 732–740. 10.1093/carcin/bgr046 PubMed DOI
Kurdistani S. K., Arizti P., Reimer C. L., Sugrue M. M., Aaronson S. A., Lee S. W. (1998). Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res. 58 (19), 4439–4444. PubMed
Lane D. J., Mills T. M., Shafie N. H., Merlot A. M., Saleh Moussa R., Kalinowski D. S., et al. (2014). Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim. Biophys. Acta 1845 (2), 166–181. 10.1016/j.bbcan.2014.01.005 PubMed DOI
Le N. T., Richardson D. R. (2004). Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. Blood 104 (9), 2967–2975. 10.1182/blood-2004-05-1866 PubMed DOI
Lee A., Lim S., Oh J., Lim J., Yang Y., Lee M. S., et al. (2021). NDRG2 expression in breast cancer cells downregulates PD-L1 expression and restores T cell proliferation in tumor-coculture. Cancers (Basel) 13 (23), 6112. 10.3390/cancers13236112 PubMed DOI PMC
Lee J. C., Chiang K. C., Feng T. H., Chen Y. J., Chuang S. T., Tsui K. H., et al. (2016). The iron chelator, Dp44mT, effectively inhibits human oral squamous cell carcinoma cell growth in vitro and in vivo . Int. J. Mol. Sci. 17 (9), 1435. 10.3390/ijms17091435 PubMed DOI PMC
Li J., Liu X., Wang H., Zhang W., Chan D. C., Shi Y. (2012). Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proc. Natl. Acad. Sci. U. S. A. 109 (18), 6975–6980. 10.1073/pnas.1120043109 PubMed DOI PMC
Liu N., Wang L., Liu X., Yang Q., Zhang J., Zhang W., et al. (2007). Promoter methylation, mutation, and genomic deletion are involved in the decreased NDRG2 expression levels in several cancer cell lines. Biochem. Biophys. Res. Commun. 358 (1), 164–169. 10.1016/j.bbrc.2007.04.089 PubMed DOI
Liu Q., Luo Q., Halim A., Song G. (2017b). Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett. 401, 39–45. 10.1016/j.canlet.2017.05.002 PubMed DOI
Liu W., Xing F., Iiizumi-Gairani M., Okuda H., Watabe M., Pai S. K., et al. (2012). N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol. Med. 4 (2), 93–108. 10.1002/emmm.201100190 PubMed DOI PMC
Liu W., Zhang B., Hu Q., Qin Y., Xu W., Shi S., et al. (2017a). A new facet of NDRG1 in pancreatic ductal adenocarcinoma: suppression of glycolytic metabolism. Int. J. Oncol. 50 (5), 1792–1800. 10.3892/ijo.2017.3938 PubMed DOI
Lui G. Y., Obeidy P., Ford S. J., Tselepis C., Sharp D. M., Jansson P. J., et al. (2013). The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol. 83 (1), 179–190. 10.1124/mol.112.081893 PubMed DOI
Menezes S. V., Sahni S., Kovacevic Z., Richardson D. R. (2017). Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J. Biol. Chem. 292 (31), 12772–12782. 10.1074/jbc.R117.776393 PubMed DOI PMC
Merlot A. M., Kalinowski D. S., Richardson D. R. (2013). Novel chelators for cancer treatment: where are we now? Antioxid. Redox Signal 18 (8), 973–1006. 10.1089/ars.2012.4540 PubMed DOI
Murakami Y., Hosoi F., Izumi H., Maruyama Y., Ureshino H., Watari K., et al. (2010). Identification of sites subjected to serine/threonine phosphorylation by SGK1 affecting N-myc downstream-regulated gene 1 (NDRG1)/Cap43-dependent suppression of angiogenic CXC chemokine expression in human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 396 (2), 376–381. 10.1016/j.bbrc.2010.04.100 PubMed DOI
Murphy M. P., Smith R. A. (2007). Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656. 10.1146/annurev.pharmtox.47.120505.105110 PubMed DOI
Park J. S., Burckhardt C. J., Lazcano R., Solis L. M., Isogai T., Li L., et al. (2020a). Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578 (7796), 621–626. 10.1038/s41586-020-1998-1 PubMed DOI PMC
Park K. C., Geleta B., Leck L. Y. W., Paluncic J., Chiang S., Jansson P. J., et al. (2020b). Thiosemicarbazones suppress expression of the c-Met oncogene by mechanisms involving lysosomal degradation and intracellular shedding. J. Biol. Chem. 295 (2), 481–503. 10.1074/jbc.RA119.011341 PubMed DOI PMC
Park K. C., Menezes S. V., Kalinowski D. S., Sahni S., Jansson P. J., Kovacevic Z., et al. (2018). Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochim. Biophys. Acta Mol. Basis Dis. 1864 (8), 2644–2663. 10.1016/j.bbadis.2018.04.011 PubMed DOI
Park K. C., Paluncic J., Kovacevic Z., Richardson D. R. (2020c). Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic. Biol. Med. 157, 154–175. 10.1016/j.freeradbiomed.2019.05.020 PubMed DOI
Paul B. T., Manz D. H., Torti F. M., Torti S. V. (2017). Mitochondria and Iron: current questions. Expert Rev. Hematol. 10 (1), 65–79. 10.1080/17474086.2016.1268047 PubMed DOI PMC
Puig S., Ramos-Alonso L., Romero A. M., Martinez-Pastor M. T. (2017). The elemental role of iron in DNA synthesis and repair. Metallomics 9 (11), 1483–1500. 10.1039/c7mt00116a PubMed DOI
Ren G. F., Tang L., Yang A. Q., Jiang W. W., Huang Y. M. (2014). Prognostic impact of NDRG2 and NDRG3 in prostate cancer patients undergoing radical prostatectomy. Histol. Histopathol. 29 (4), 535–542. 10.14670/HH-29.10.535 PubMed DOI
Renassia C., Peyssonnaux C. (2019). New insights into the links between hypoxia and iron homeostasis. Curr. Opin. Hematol. 26 (3), 125–130. 10.1097/MOH.0000000000000494 PubMed DOI PMC
Rohlenova K., Sachaphibulkij K., Stursa J., Bezawork-Geleta A., Blecha J., Endaya B., et al. (2017). Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer. Antioxid. Redox Signal 26 (2), 84–103. 10.1089/ars.2016.6677 PubMed DOI PMC
Sahni S., Park K. C., Kovacevic Z., Richardson D. R. (2019). Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1. Biochim. Biophys. Acta Mol. Basis Dis. 1865 (6), 1361–1378. 10.1016/j.bbadis.2019.02.008 PubMed DOI
Sandoval-Acuna C., Fuentes-Retamal S., Guzman-Rivera D., Peredo-Silva L., Madrid-Rojas M., Rebolledo S., et al. (2016). Destabilization of mitochondrial functions as a target against breast cancer progression: role of TPP(+)-linked-polyhydroxybenzoates. Toxicol. Appl. Pharmacol. 309, 2–14. 10.1016/j.taap.2016.08.018 PubMed DOI
Sandoval-Acuna C., Torrealba N., Tomkova V., Jadhav S. B., Blazkova K., Merta L., et al. (2021). Targeting mitochondrial iron metabolism suppresses tumor growth and metastasis by inducing mitochondrial dysfunction and mitophagy. Cancer Res. 81 (9), 2289–2303. 10.1158/0008-5472.CAN-20-1628 PubMed DOI
Sang Y., Kong P., Zhang S., Zhang L., Cao Y., Duan X., et al. (2020). SGK1 in human cancer: emerging roles and mechanisms. Front. Oncol. 10, 608722. 10.3389/fonc.2020.608722 PubMed DOI PMC
Sevinsky C. J., Khan F., Kokabee L., Darehshouri A., Maddipati K. R., Conklin D. S. (2018). NDRG1 regulates neutral lipid metabolism in breast cancer cells. Breast Cancer Res. 20 (1), 55. 10.1186/s13058-018-0980-4 PubMed DOI PMC
Sheftel A. D., Mason A. B., Ponka P. (2012). The long history of iron in the Universe and in health and disease. Biochim. Biophys. Acta 1820 (3), 161–187. 10.1016/j.bbagen.2011.08.002 PubMed DOI PMC
Shehadeh-Tout F., Milioli H. H., Roslan S., Jansson P. J., Dharmasivam M., Graham D., et al. (2023). Innovative thiosemicarbazones that induce multi-modal mechanisms to down-regulate estrogen-progesterone-androgen- and prolactin-receptors in breast cancer. Pharmacol. Res. 193, 106806. 10.1016/j.phrs.2023.106806 PubMed DOI
Shen L., Qu X., Li H., Xu C., Wei M., Wang Q., et al. (2018). NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene 37 (13), 1759–1774. 10.1038/s41388-017-0118-7 PubMed DOI PMC
Shi X. H., Larkin J. C., Chen B., Sadovsky Y. (2013). The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS One 8 (9), e75473. 10.1371/journal.pone.0075473 PubMed DOI PMC
Stevens R. G., Jones D. Y., Micozzi M. S., Taylor P. R. (1988). Body iron stores and the risk of cancer. N. Engl. J. Med. 319 (16), 1047–1052. 10.1056/NEJM198810203191603 PubMed DOI
Torti S. V., Torti F. M. (2013). Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13 (5), 342–355. 10.1038/nrc3495 PubMed DOI PMC
Truksa J., Dong L. F., Rohlena J., Stursa J., Vondrusova M., Goodwin J., et al. (2015). Mitochondrially targeted vitamin E succinate modulates expression of mitochondrial DNA transcripts and mitochondrial biogenesis. Antioxid. Redox Signal 22 (11), 883–900. 10.1089/ars.2013.5594 PubMed DOI
Villodre E. S., Gong Y., Hu X., Huo L., Yoon E. C., Ueno N. T., et al. (2020). NDRG1 expression is an independent prognostic factor in inflammatory breast cancer. Cancers (Basel) 12 (12), 3711. 10.3390/cancers12123711 PubMed DOI PMC
Villodre E. S., Hu X., Eckhardt B. L., Larson R., Huo L., Yoon E. C., et al. (2022). NDRG1 in aggressive breast cancer progression and brain metastasis. J. Natl. Cancer Inst. 114 (4), 579–591. 10.1093/jnci/djab222 PubMed DOI PMC
Wang J., Yin D., Xie C., Zheng T., Liang Y., Hong X., et al. (2014). The iron chelator Dp44mT inhibits hepatocellular carcinoma metastasis via N-Myc downstream-regulated gene 2 (NDRG2)/gp130/STAT3 pathway. Oncotarget 5 (18), 8478–8491. 10.18632/oncotarget.2328 PubMed DOI PMC
Yu C., Hao X., Zhang S., Hu W., Li J., Sun J., et al. (2019). Characterization of the prognostic values of the NDRG family in gastric cancer. Ther. Adv. Gastroenterol. 12, 1756284819858507. 10.1177/1756284819858507 PubMed DOI PMC
Yu Y., Kovacevic Z., Richardson D. R. (2007). Tuning cell cycle regulation with an iron key. Cell. Cycle 6 (16), 1982–1994. 10.4161/cc.6.16.4603 PubMed DOI
Zhai Z., Mu T., Zhao L., Li Y., Zhu D., Pan Y. (2022). MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered 13 (1), 83–95. 10.1080/21655979.2021.2006974 PubMed DOI PMC
Zhou J., Jiang Y., Zhao J., Zhang H., Fu J., Luo P., et al. (2020). Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma. Cell. Oncol. (Dordr) 43 (3), 461–475. 10.1007/s13402-020-00502-y PubMed DOI
Zhou L., Zhao B., Zhang L., Wang S., Dong D., Lv H., et al. (2018). Alterations in cellular iron metabolism provide more therapeutic opportunities for cancer. Int. J. Mol. Sci. 19 (5), 1545. 10.3390/ijms19051545 PubMed DOI PMC