The timing of pronuclear transfer critically affects the developmental competence and quality of embryos
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 HD102533
NICHD NIH HHS - United States
R01HD102533
NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development
GACR 20-04465S
Czech Science Foundation
USDA National Institute of Food and Agriculture
PubMed
38991843
PubMed Central
PMC11262804
DOI
10.1093/molehr/gaae024
PII: 7712434
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, developmental rate, embryo, pronuclear transfer, replication,
- MeSH
- blastocysta * metabolismus cytologie MeSH
- buněčné jádro metabolismus MeSH
- časové faktory MeSH
- cytoplazma metabolismus MeSH
- embryo savčí MeSH
- embryonální vývoj * MeSH
- myši MeSH
- oocyty metabolismus cytologie MeSH
- techniky jaderného přenosu * MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.
Department of Animal Sciences Genetics Institute University of Florida Gainesville FL USA
Department of Biology of Reproduction Institute of Animal Science Prague Czech Republic
Zobrazit více v PubMed
Borel F, Lacroix FB, Margolis RL. Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci 2002;115:2829–2838. PubMed
Burton A, Torres-Padilla M-E. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 2010;9:444–454. PubMed PMC
Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 1997;350:186–187. PubMed
Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010;465:82–85. PubMed PMC
Currie CE, Ford E, Benham Whyte L, Taylor DM, Mihalas BP, Erent M, Marston AL, Hartshorne GM, McAinsh AD. The first mitotic division of human embryos is highly error prone. Nat Commun 2022;13:6755. PubMed PMC
Davis W, Schultz RM. Role of the first round of DNA replication in reprogramming gene expression in the preimplantation mouse embryo. Mol Reprod Dev 1997;47:430–434. PubMed
Feu S, Unzueta F, Ercilla A, Pérez-Venteo A, Jaumot M, Agell N. RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress. PLoS One 2022;17:e0266645. PubMed PMC
Fulka H, Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition. Development 2014;141:1694–1704. PubMed
Fulka H, Ogura A, Loi P, Fulka J Jr. Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming. J Reprod Dev 2019;65:433–441. PubMed PMC
Glover TW, Berger C, Coyle J, Echo B. DNA polymerase α inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 1984;67:136–142. PubMed
Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014;149:46–58. PubMed
Greda P, Karasiewicz J, Modlinski JA. Mouse zygotes as recipients in embryo cloning. Reproduction 2006;132:741–748. PubMed
Inoue A, Nakajima R, Nagata M, Aoki F. Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice. Hum Reprod 2008;23:1377–1384. PubMed
Ishii T, Hibino Y. Mitochondrial manipulation in fertility clinics: regulation and responsibility. Reprod Biomed Soc Online 2018;5:93–109. PubMed PMC
Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 2014;15:756. PubMed PMC
Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell 2017;42:316–332. PubMed PMC
Kishigami S, Wakayama T. Efficient strontium-induced activation of mouse oocytes in standard culture media by chelating calcium. J Reprod Dev 2007;53:1207–1215. PubMed
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 2014;30:581–613. PubMed PMC
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 2015;25:9–23. PubMed PMC
Mashiko D, Ikeda Z, Yao T, Tokoro M, Fukunaga N, Asada Y, Yamagata K. Chromosome segregation error during early cleavage in mouse pre-implantation embryo does not necessarily cause developmental failure after blastocyst stage. Sci Rep 2020;10:854. PubMed PMC
Memili E, First NL. Control of gene expression at the onset of bovine embryonic development. Biol Reprod 1999;61:1198–1207. PubMed
Ménézo YJ, Hérubel F. Mouse and bovine models for human IVF. Reprod Biomed Online 2002;4:170–175. PubMed
Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. Differences between germline and somatic mutation rates in humans and mice. Nat Commun 2017;8:15183. PubMed PMC
Moeglin E, Desplancq D, Conic S, Oulad-Abdelghani M, Stoessel A, Chiper M, Vigneron M, Didier P, Tora L, Weiss E. Uniform widespread nuclear phosphorylation of histone H2AX is an indicator of lethal DNA replication stress. Cancers (Basel) 2019;11:355. PubMed PMC
Mohammed AA, Karasiewicz J, Modliński JA. Developmental potential of selectively enucleated immature mouse oocytes upon nuclear transfer. Mol Reprod Dev 2008;75:1269–1280. PubMed
Nakatani T, Lin J, Ji F, Ettinger A, Pontabry J, Tokoro M, Altamirano-Pacheco L, Fiorentino J, Mahammadov E, Hatano Y et al. DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nat Genet 2022;54:318–327. PubMed PMC
Nakatani T, Schauer T, Altamirano-Pacheco L, Klein KN, Ettinger A, Pal M, Gilbert DM, Torres-Padilla M-E. Emergence of replication timing during early mammalian development. Nature 2024;625:401–409. PubMed PMC
Palacios-González C, Medina-Arellano MJ. Mitochondrial replacement techniques and Mexico’s rule of law: on the legality of the first maternal spindle transfer case. J Law Biosci 2017;4:50–69. PubMed PMC
Palmerola KL, Amrane S, De Los Angeles A, Xu S, Wang N, Pinho J D, Zuccaro MV, Taglialatela A, Massey DJ, Turocy J et al. Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell 2022;185:2988–3007.e20. PubMed
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022;82:2298–2314. PubMed PMC
Spindle A, Nagano H, Pedersen RA. Inhibition of DNA replication in preimplantation mouse embryos by aphidicolin. J Exp Zool 1985;235:289–295. PubMed
Takeo T, Nakagata N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod 2011;85:1066–1072. PubMed
Wang B, Pfeiffer MJ, Schwarzer C, Araúzo-Bravo MJ, Boiani M. DNA replication is an integral part of the mouse oocyte’s reprogramming machinery. PLoS One 2014;9:e97199. PubMed PMC
Wang TS. Eukaryotic DNA polymerases. Annu Rev Biochem 1991;60:513–552. PubMed