Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming
Jazyk angličtina Země Japonsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31423000
PubMed Central
PMC6815741
DOI
10.1262/jrd.2019-017
Knihovny.cz E-zdroje
- Klíčová slova
- Nucleus transfer, Oocyte, Selective enucleation,
- MeSH
- buněčné jadérko metabolismus MeSH
- buněčné jádro metabolismus MeSH
- chromatin metabolismus MeSH
- cytoplazma metabolismus MeSH
- jaderná lamina metabolismus MeSH
- jaderný obal metabolismus MeSH
- messenger RNA metabolismus MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- oogeneze MeSH
- ovariální folikul metabolismus MeSH
- přeprogramování buněk * MeSH
- techniky jaderného přenosu * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- messenger RNA MeSH
Differentiated nuclei can be reprogrammed/remodelled to totipotency after their transfer to enucleated metaphase II (MII) oocytes. The process of reprogramming/remodelling is, however, only partially characterized. It has been shown that the oocyte nucleus (germinal vesicle - GV) components are essential for a successful remodelling of the transferred nucleus by providing the materials for pseudo-nucleus formation. However, the nucleus is a complex structure and exactly what nuclear components are required for a successful nucleus remodelling and reprogramming is unknown. Till date, the only nuclear sub-structure experimentally demonstrated to be essential is the oocyte nucleolus (nucleolus-like body, NLB). In this study, we investigated what other GV components might be necessary for the formation of normal-sized pseudo-pronuclei (PNs). Our results showed that the removal of the GV nuclear envelope with attached chromatin and chromatin-bound factors does not substantially influence the size of the remodelled nuclei in reconstructed cells and that their nuclear envelopes seem to have normal parameters. Rather than the insoluble nuclear lamina, the GV content, which is dissolved in the cytoplasm with the onset of oocyte maturation, influences the characteristics and size of transferred nuclei.
Faculty of Veterinary Medicine University of Teramo Teramo 64100 Italy
Institute of Animal Science 140 00 Prague Czech Republic
Institute of Experimental Medicine 142 20 Prague Czech Republic
Institute of Molecular Genetics of the ASCR 142 20 Prague Czech Republic
Zobrazit více v PubMed
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20110329. PubMed PMC
Czernik M, Anzalone DA, Palazzese L, Oikawa M, Loi P. Somatic cell nuclear transfer: failures, successes and the challenges ahead. Int J Dev Biol 2019; 63: 123–130. PubMed
Matoba S, Zhang Y. Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 2018; 23: 471–485. PubMed PMC
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86: 80–90. PubMed
Sepulveda-Rincon LP, Solanas EL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86: 91–98. PubMed
Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 2004; 71: 185–193. PubMed
Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13: 1116–1121. PubMed
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays 2015; 37: 52–59. PubMed PMC
Nashun B, Akiyama T, Suzuki MG, Aoki F. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 2011; 6: 1489–1497. PubMed
Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 2016; 32: 29–41. PubMed PMC
Smith ZD, Sindhu C, Meissner A. Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 2016; 17: 139–154. PubMed
Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J., Jr. The maternal nucleolus is essential for early embryonic development in mammals. Science 2008; 319: 613–616. PubMed
Fulka H, Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition. Development 2014; 141: 1694–1704. PubMed
Kyogoku H, Fulka J, Jr, Wakayama T, Miyano T. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Development 2014; 141: 2255–2259. PubMed
Fadloun A, Eid A, Torres-Padilla ME. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr Top Dev Biol 2013; 104: 1–45. PubMed
Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 2006; 292: 317–332. PubMed
Martin C, Brochard V, Migné C, Zink D, Debey P, Beaujean N. Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol Reprod Dev 2006; 73: 1102–1111. PubMed
Burke B, Ellenberg J. Remodelling the walls of the nucleus. Nat Rev Mol Cell Biol 2002; 3: 487–497. PubMed
Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol 2010; 2: a000539. PubMed PMC
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22: 832–853. PubMed PMC
Bui H-T, Wakayama S, Kishigami S, Kim J-H, Van Thuan N, Wakayama T. The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development 2008; 135: 3935–3945. PubMed
Modliński JA. Haploid mouse embryos obtained by microsurgical removal of one pronucleus. J Embryol Exp Morphol 1975; 33: 897–905. PubMed
Greda P, Karasiewicz J, Modlinski JA. Mouse zygotes as recipients in embryo cloning. Reproduction 2006; 132: 741–748. PubMed
Fulka J, Jr, Martinez F, Tepla O, Mrazek M, Tesarik J. Somatic and embryonic cell nucleus transfer into intact and enucleated immature mouse oocytes. Hum Reprod 2002; 17: 2160–2164. PubMed
Fulka H, Novakova Z, Mosko T, Fulka J., Jr The inability of fully grown germinal vesicle stage oocyte cytoplasm to transcriptionally silence transferred transcribing nuclei. Histochem Cell Biol 2009; 132: 457–468. PubMed
Abe K, Inoue A, Suzuki MG, Aoki F. Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J Reprod Dev 2010; 56: 502–507. PubMed
Hörmanseder E, Simeone A, Allen GE, Bradshaw CR, Figlmüller M, Gurdon J, Jullien J. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 2017; 21: 135–143.e6. PubMed PMC
Akiyama T, Suzuki O, Matsuda J, Aoki F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 2011; 7: e1002279. PubMed PMC
Fulka J, Jr, First NL, Moor RM. Nuclear transplantation in mammals: remodelling of transplanted nuclei under the influence of maturation promoting factor. BioEssays 1996; 18: 835–840. PubMed
Bałakier H, Tarkowski AK. The role of germinal vesicle karyoplasm in the development of male pronucleus in the mouse. Exp Cell Res 1980; 128: 79–85. PubMed
Ogushi S, Fulka J, Jr, Miyano T. Germinal vesicle materials are requisite for male pronucleus formation but not for change in the activities of CDK1 and MAP kinase during maturation and fertilization of pig oocytes. Dev Biol 2005; 286: 287–298. PubMed
Byrne JA, Simonsson S, Western PS, Gurdon JB. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 2003; 13: 1206–1213. PubMed
Wen D, Banaszynski LA, Rosenwaks Z, Allis CD, Rafii S. H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 2014; 5: 369–375. PubMed
Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon JB. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 2012; 5: 17. PubMed PMC
Ishiuchi T, Enriquez-Gasca R, Mizutani E, Bošković A, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla ME. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 2015; 22: 662–671. PubMed
Cheloufi S, Hochedlinger K. Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 2017; 46: 83–94. PubMed PMC
Loyola A, Almouzni G. Marking histone H3 variants: how, when and why? Trends Biochem Sci 2007; 32: 425–433. PubMed
Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev 2005; 19: 295–310. PubMed
Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 2005; 19: 804–814. PubMed PMC