Exploring the Influence of Soil Types on the Mineral Profile of Honey: Implications for Geographical Origin Prediction
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
22220064
International Visegrad Fund
PubMed
38998511
PubMed Central
PMC11241210
DOI
10.3390/foods13132006
PII: foods13132006
Knihovny.cz E-resources
- Keywords
- Czech beekeepers, GIS, sustainability, traces elements,
- Publication type
- Journal Article MeSH
Honey contains a wide range of inorganic substances. Their content can be influenced, i.e., by the type of soil on which the bee pasture is located. As part of this study, the mineral profile of 32 samples of honey from hobby beekeepers from the Czech Republic wasevaluated and then compared with soil types in the vicinity of the beehive location. Pearson's correlation coefficient was used to express the relationship between mineral substances and soil type. There was a high correlation between antroposol and Zn (R = 0.98), Pb (R = 0.96), then between ranker and Mn (0.95), then regosol and Al (R = 0.97) (p < 0.05). A high negative correlation was found between regosol and Mg (R = -0.97), Cr (R = -0.98) and between redzinas and Al (R = -0.97) (p < 0.05). Both positive and negative high correlations were confirmed for phaeozem. The CART method subsequently proved that the characteristic elements for individual soil types are B, Ca, Mg, Ni, and Mn. The soil types of cambisol, fluvisol, gleysol, anthrosol, and kastanozem had the closest relationship with the elements mentioned, and it can therefore be assumed that their occurrence indicates the presence of these soil types within the range of beehive location.
See more in PubMed
Bogdanov S., Haldimann M., Luginbühl W., Gallmann P. Minerals in Honey: Environmental, Geographical and Botanical Aspects. J. Apic. Res. 2007;46:269–275. doi: 10.1080/00218839.2007.11101407. DOI
Alvarez-Suarez J.M., Tulipani S., Romandini S., Bertoli E., Battino M. Contribution of Honey in Nutrition and Human Health: A Review. Med. J. Nutr. Metab. 2010;3:15–23. doi: 10.1007/s12349-009-0051-6. DOI
van der Steen J.J.M. The Foraging Honey Bee. Br. Bee J. 2015;2015:43–46.
Pound M.J., Vinkenoog R., Hornby S., Benn J., Goldberg S., Keating B., Woollard F. Determining If Honey Bees (Apis mellifera) Collect Pollen from Anemophilous Plants in the UK. Palynology. 2022;47:2154867. doi: 10.1080/01916122.2022.2154867. DOI
Cunningham M.M., Tran L., McKee C.G., Ortega Polo R., Newman T., Lansing L., Griffiths J.S., Bilodeau G.J., Rott M., Marta Guarna M. Honey Bees as Biomonitors of Environmental Contaminants, Pathogens, and Climate Change. Ecol. Indic. 2022;134:108457. doi: 10.1016/j.ecolind.2021.108457. DOI
Bratu I., Georgescu C. Chemical Contamination of Bee Honey—Identifying Sensor of the Environment Pollution. J. Cent. Eur. Agric. 2005;6:95–98.
Crane E. Bees, Honey and Pollen as Indicators of Metals in the Environment. Bee World. 1984;61:47–49. doi: 10.1080/0005772X.1984.11098770. DOI
Svoboda J. Poisoning of Bees by Industrial Arsenic Emissions. Ceská Akademie Zemědelskych Věd; Prague, Czechia: 1961. pp. 1499–1506.
Celli G., Maccagnani B. Honey Bees as Bioindicators of Environmental Pollution. Bull. Insectology. 2003;56:137–139.
Svoboda J. Teneur En Strontium 90 Dans Les Abeilles et Dans Leurs Produits. Bull. Apic. 1962;5:101–103.
Leita L., Muhlbachova G., Cesco S., Barbattini R., Mondini C. Investigation of the Use of Honey Bees and Honey Bee Products to Assess Heavy Metals Contamination. Environ. Monit. Assess. 1996;43:1–9. doi: 10.1007/BF00399566. PubMed DOI
Ruschioni S., Riolo P., Minuz R.L., Stefano M., Cannella M., Porrini C., Isidoro N. Biomonitoring with Honeybees of Heavy Metals and Pesticides in Nature Reserves of the Marche Region (Italy) Biol. Trace Elem. Res. 2013;154:226–233. doi: 10.1007/s12011-013-9732-6. PubMed DOI
Persano Oddo L., Piro R. Main European Unifloral Honeys: Descriptive Sheets. Apidologie. 2004;35:S38–S81. doi: 10.1051/apido:2004049. DOI
González-Miret M.L., Terrab A., Hernanz D., Fernández-Recamales M.Á., Heredia F.J. Multivariate Correlation between Color and Mineral Composition of Honeys and by Their Botanical Origin. J. Agric. Food Chem. 2005;53:2574–2580. doi: 10.1021/jf048207p. PubMed DOI
Lachman J., Kolihová D., Miholová D., Košata J., Titěra D., Kult K. Analysis of Minority Honey Components: Possible Use for the Evaluation of Honey Quality. Food Chem. 2007;101:973–979. doi: 10.1016/j.foodchem.2006.02.049. DOI
Anklam E. A Review of the Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998;63:549–562. doi: 10.1016/S0308-8146(98)00057-0. DOI
Porrini C., Sabatini A.G., Girotti S., Ghini S., Medrzycki P., Grillenzoni F., Bortolotti L., Gattavecchia E., Celli G. Honey bees and bee products as monitors of the environmental contamination. Apiacta. 2003;38:63–70.
Solayman M., Islam M.A., Paul S., Ali Y., Khalil M.I., Alam N., Gan S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016;15:219–233. doi: 10.1111/1541-4337.12182. PubMed DOI
González-Porto A.V., Martín Arroyo T., Bartolomé Esteban C. How Soil Type (Gypsum or Limestone) Influences the Properties and Composition of Thyme Honey. Springerplus. 2016;5:1663. doi: 10.1186/s40064-016-3243-9. PubMed DOI PMC
Sakač M.B., Jovanov P.T., Marić A.Z., Pezo L.L., Kevrešan Ž.S., Novaković A.R., Nedeljković N.M. Physicochemical Properties and Mineral Content of Honey Samples from Vojvodina (Republic of Serbia) Food Chem. 2019;276:15–21. doi: 10.1016/j.foodchem.2018.09.149. PubMed DOI
Helfenstein J., Jegminat J., Mclaren T.I., Frossard E. Soil Solution Phosphorus Turnover: Derivation, Interpretation, and Insights from a Global Compilation of Isotope Exchange Kinetic Studies. Biogeosciences. 2018;15:105–114. doi: 10.5194/bg-15-105-2018. DOI
IUSS Working Group WRB . World Reference Base for Soil Resources 2014, Update 2015. Volume 106. Food and Agriculture Organization of the United Nations; Rome, Italy: 2015.
Hajková M., Svobodová J. Geography; Thematic Atlas Czech Republic; Cartographic Skills. Masaryk Univerzity; Brno, Czech Republic: 2017.
Pospiech M., Javůrková Z., Hrabec P., Štarha P., Ljasovská S., Bednář J., Tremlová B. Identification of Pollen Taxa by Different Microscopy Techniques. PLoS ONE. 2021;16:e0256808. doi: 10.1371/journal.pone.0256808. PubMed DOI PMC
CENIA Národní Geoportál INSPIRE. [(accessed on 23 March 2024)]; Available online: https://geoportal.gov.cz/web/guest/map?openNode=Stanovi%C5%A1t%C4%9B+a+biotopy&keywordList=inspire.
Nachtergaele F.O., Spaargaren O., Deckers J.A., Ahrens B. New Developments in Soil Classification: World Reference Base for Soil Resources. Geoderma. 2000;96:345–357. doi: 10.1016/S0016-7061(00)00023-9. DOI
Foodstuffs—Determination of Trace Elements—Determination of Arsenic, Cadmium, Mercury, and Lead in Foodstuffs by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after Pressure Digestion. European Committee For Standardization; Brussels, Belgium: 2010.
Foodstuffs—Determination of Trace Elements—Pressure Digestion. British Standards Institution; London, UK: 2014.
Foodstuffs—Determination of Trace Elements—Performance Criteria, General Considerations, and Sample Preparation. European Committee For Standardization; Brussels, Belgium: 2013.
Silva L.R., Videira R., Monteiro A.P., Valentão P., Andrade P.B. Honey from Luso Region (Portugal): Physicochemical Characteristics and Mineral Contents. Microchem. J. 2009;93:73–77. doi: 10.1016/j.microc.2009.05.005. DOI
Alves A., Ramos A., Gonçalves M.M., Bernardo M., Mendes B. Antioxidant Activity, Quality Parameters and Mineral Content of Portuguese Monofloral Honeys. J. Food Compos. Anal. 2013;30:130–138. doi: 10.1016/j.jfca.2013.02.009. DOI
Terrab A., Recamales A.F., Hernanz D., Heredia F.J. Characterisation of Spanish Thyme Honeys by Their Physicochemical Characteristics and Mineral Contents. Food Chem. 2004;88:537–542. doi: 10.1016/j.foodchem.2004.01.068. DOI
Kek S.P., Chin N.L., Tan S.W., Yusof Y.A., Chua L.S. Classification of Honey from Its Bee Origin via Chemical Profiles and Mineral Content. Food Anal. Methods. 2017;10:19–30. doi: 10.1007/s12161-016-0544-0. DOI
Conti M.E. Lazio Region (Central Italy) Honeys: A Survey of Mineral Content and Typical Quality Parameters. Food Control. 2000;11:459–463. doi: 10.1016/S0956-7135(00)00011-6. DOI
Fernández-Torres R., Luis Pérez-Bernal J., Bello-López A., Callejón-Mochón M., Carlos Jiménez-Sánchez J., Guiraúm-Pérez A. Mineral Content and Botanical Origin of Spanish Honeys. Talanta. 2005;65:686–691. doi: 10.1016/j.talanta.2004.07.030. PubMed DOI
Pasquini B., Goodarzi M., Orlandini S., Beretta G., Furlanetto S., Dejaegher B. Geographical Characterisation of Honeys According to Their Mineral Content and Antioxidant Activity Using a Chemometric Approach. Int. J. Food Sci. Technol. 2014;49:1351–1359. doi: 10.1111/ijfs.12436. DOI
Taha E.K.A. Chemical Composition and Amounts of Mineral Elements in Honeybee-Collected Pollen in Relation to Botanical Origin. J. Apic. Sci. 2015;59:75–81. doi: 10.1515/jas-2015-0008. DOI
Louppis A.P., Karabagias I.K., Kontakos S., Kontominas M.G., Papastephanou C., Konstantinos Karabagias I., Kontakos S., Kontominas M.G., Papastephanou C. Botanical Discrimination of Greek Unifloral Honeys Based on Mineral Content in Combination with Physicochemical Parameter Analysis, Using a Validated Chemometric Approach. Microchem. J. 2017;135:180–189. doi: 10.1016/j.microc.2017.09.004. DOI
Rashed M.N., Soltan M.E. Major and Trace Elements in Different Types of Egyptian Mono-Floral and Non-Floral Bee Honeys. J. Food Compos. Anal. 2004;17:725–735. doi: 10.1016/j.jfca.2003.10.004. DOI
Di Bella G., Lo Turco V., Potortì A.G., Bua G.D., Fede M.R., Dugo G. Geographical Discrimination of Italian Honey by Multi-Element Analysis with a Chemometric Approach. J. Food Compos. Anal. 2015;44:25–35. doi: 10.1016/j.jfca.2015.05.003. DOI
Pisani A., Protano G., Riccobono F. Minor and Trace Elements in Different Honey Types Produced in Siena County (Italy) Food Chem. 2008;107:1553–1560. doi: 10.1016/j.foodchem.2007.09.029. DOI
Yilmaz H., Yavuz Ö. Content of Some Trace Metals in Honey from South-Eastern Anatolia. Food Chem. 1999;65:475–476. doi: 10.1016/S0308-8146(98)00205-2. DOI
European Food Safety Authority (EFSA) Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies [NDA] Related to the Tolerable Upper Intake Level of Sodium. EFSA J. 2005;3:209. doi: 10.2903/j.efsa.2005.209. DOI
Allen L.H., Carriquiry A.L., Murphy S.P. Perspective: Proposed Harmonized Nutrient Reference Values for Populations. Adv. Nutr. 2020;11:469–483. doi: 10.1093/advances/nmz096. PubMed DOI PMC
Godswill A.G., Somtochukwu I.V., Ikechukwu A.O., Kate E.C. Health Benefits of Micronutrients (Vitamins and Minerals) and Their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020;3:1–32. doi: 10.47604/ijf.1024. DOI
Vida-Aliz V., Ferenczi F. Trends in Honey Consumption and Purchasing Habits in the European Union. Appl. Stud. Agribus. Commer. 2023;17 doi: 10.19041/APSTRACT/2023/1/6. DOI
Latorre M.J., Peña R., Pita C., Botana A., García S., Herrero C. Chemometric Classification of Honeys According to Their Type. II. Metal Content Data. Food Chem. 1999;66:263–268. doi: 10.1016/S0308-8146(98)00217-9. DOI
Downey G., Hussey K., Daniel Kelly J., Walshe T.F., Martin P.G. Preliminary Contribution to the Characterisation of Artisanal Honey Produced on the Island of Ireland by Palynological and Physico-Chemical Data. Food Chem. 2005;91:347–354. doi: 10.1016/j.foodchem.2004.06.020. DOI
Silva L.R., Sousa A., Taveira M. Characterization of Portuguese Honey from Castelo Branco Region According to Their Pollen Spectrum, Physicochemical Characteristics and Mineral Contents. J. Food Sci. Technol. 2017;54:2551–2561. doi: 10.1007/s13197-017-2700-y. PubMed DOI PMC
Madejczyk M., Baralkiewicz D. Characterization of Polish Rape and Honeydew Honey According to Their Mineral Contents Using ICP-MS and F-AAS/AES. Anal. Chim. Acta. 2008;617:11–17. doi: 10.1016/j.aca.2008.01.038. PubMed DOI
Czipa N., Andrási D., Kovács B. Determination of Essential and Toxic Elements in Hungarian Honeys. Food Chem. 2014;175:536–542. doi: 10.1016/j.foodchem.2014.12.018. PubMed DOI
Christophe C., Gil K., Laurent S.-A., Paul-Olivier R., Marie-Pierre T. Relationship between Soil Nutritive Resources and the Growth and Mineral Nutrition of a Beech (Fagus sylvatica) Stand along a Soil Sequence. Catena. 2017;155:156–169. doi: 10.1016/j.catena.2017.03.013. DOI
Wyszkowski M., Brodowska M.S. Content of Trace Elements in Soil Fertilized with Potassium and Nitrogen. Agriculture. 2020;10:398. doi: 10.3390/agriculture10090398. DOI
Mititelu M., Udeanu D.I., Docea A.O., Tsatsakis A., Calina D., Arsene A.L., Nedelescu M., Neacsu S.M., Velescu B.Ș., Ghica M. New Method for Risk Assessment in Environmental Health: The Paradigm of Heavy Metals in Honey. Environ. Res. 2023;236:115194. doi: 10.1016/j.envres.2022.115194. PubMed DOI
Joy E.J.M., Broadley M.R., Young S.D., Black C.R., Chilimba A.D.C., Ander E.L., Barlow T.S., Watts M.J. Soil Type Influences Crop Mineral Composition in Malawi. Sci. Total Environ. 2015;505:587–595. doi: 10.1016/j.scitotenv.2014.10.038. PubMed DOI
Jordan-Meille L., Holland J.E., McGrath S.P., Glendining M.J., Thomas C.L., Haefele S.M. The Grain Mineral Composition of Barley, Oat and Wheat on Soils with PH and Soil Phosphorus Gradients. Eur. J. Agron. 2021;126:126281. doi: 10.1016/j.eja.2021.126281. DOI
Pongrac P., McNicol J.W., Lilly A., Thompson J.A., Wright G., Hillier S., White P.J. Mineral Element Composition of Cabbage as Affected by Soil Type and Phosphorus and Zinc Fertilisation. Plant Soil. 2019;434:151–165. doi: 10.1007/s11104-018-3628-3. DOI
Kaiser M., Ellerbrock R.H., Wulf M., Dultz S., Hierath C., Sommer M. The Influence of Mineral Characteristics on Organic Matter Content, Composition, and Stability of Topsoils under Long-Term Arable and Forest Land Use. J. Geophys. Res. Biogeosci. 2012;117:2018. doi: 10.1029/2011JG001712. DOI
Nickless E.M., Anderson C.W.N., Hamilton G., Stephens J.M., Wargent J. Soil Influences on Plant Growth, Floral Density and Nectar Yield in Three Cultivars of Mānuka (Leptospermum scoparium) N. Z. J. Bot. 2017;55:100–117. doi: 10.1080/0028825X.2016.1247732. DOI
Meister A., Gutierrez-Gines M.J., Maxfield A., Gaw S., Dickinson N., Horswell J., Robinson B. Chemical Elements and the Quality of Mānuka (Leptospermum scoparium) Honey. Foods. 2021;10:1670. doi: 10.3390/foods10071670. PubMed DOI PMC
Wielgolaski F.E. Phenological Modifications in Plants by Various Edaphic Factors. Int. J. Biometeorol. 2001;45:196–202. doi: 10.1007/s004840100100. PubMed DOI
Cardoso F.C.G., Marques R., Botosso P.C., Marques M.C.M. Stem Growth and Phenology of Two Tropical Trees in Contrasting Soil Conditions. Plant Soil. 2012;354:269–281. doi: 10.1007/s11104-011-1063-9. DOI
Popek S., Halagarda M., Kursa K. A New Model to Identify Botanical Origin of Polish Honeys Based on the Physicochemical Parameters and Chemometric Analysis. LWT. 2017;77:482–487. doi: 10.1016/j.lwt.2016.12.003. DOI
Tomášek M. Atlas Půd České Republiky (Soil Atlas of the Czech Republic) Volume 1 Český Geologický Ústav; Prague, Czech Republic: 1995.
Růžek L., Růžková M., Voříšek K., Kubát J., Friedlová M., Mikanová O. Chemical and Microbiological Characterization of Cambisols, Luvisols and Stagnosols. Plant Soil Environ. 2009;55:231–237. doi: 10.17221/35/2009-PSE. DOI
Hejcman M., Kunzová E. Sustainability of Winter Wheat Production on Sandy-Loamy Cambisol in the Czech Republic: Results from a Long-Term Fertilizer and Crop Rotation Experiment. Field Crops Res. 2010;115:191–199. doi: 10.1016/j.fcr.2009.11.004. DOI
Gaberšek M., Gosar M. Geochemistry of Urban Soil in the Industrial Town of Maribor, Slovenia. J. Geochem. Explor. 2018;187:141–154. doi: 10.1016/j.gexplo.2017.06.001. DOI
Vasilchenko A.V., Vasilchenko A.S. Plaggic Anthrosol in Modern Research: Genesis, Properties and Carbon Sequestration Potential. Catena. 2024;234:107626. doi: 10.1016/j.catena.2023.107626. DOI
Krupski M., Kabala C., Sady A., Gliński R., Wojcieszak J. Double-and Triple-Depth Digging and Anthrosol Formation in a Medieval and Modern-Era City (Wrocław, SW Poland). Geoarchaeological Research on Past Horticultural Practices. Catena. 2017;153:9–20. doi: 10.1016/j.catena.2017.01.028. DOI
Sorokin A.S., Abrosimov K.N., Lebedeva M.P., Kust G.S. Composition and Structure of Aggregates from Compacted Soil Horizons in the Southern Steppe Zone of European Russia. Eurasian Soil Sci. 2016;49:355–367. doi: 10.1134/S1064229316030108. DOI