Identification of pollen taxa by different microscopy techniques
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34469471
PubMed Central
PMC8409677
DOI
10.1371/journal.pone.0256808
PII: PONE-D-21-12822
Knihovny.cz E-zdroje
- MeSH
- barva MeSH
- med analýza MeSH
- mikroskopie metody MeSH
- počítačové zpracování obrazu metody MeSH
- pyl klasifikace MeSH
- včelařství * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.
Zobrazit více v PubMed
von der Ohe W, Persano Oddo L, Piana ML, Morlot M, Martin P. Harmonized methods of melissopalynology. Apidologie. 2004;35: S18–S25. doi: 10.1051/apido:2004050 DOI
Shafiee S, Minaei S, Moghaddam-Charkari N, Ghasemi-Varnamkhasti M, Barzegar M. Potential application of machine vision to honey characterization. Trends in Food Science and Technology. 2013. pp. 174–177. doi: 10.1016/j.tifs.2012.12.004 DOI
Feás X, Pires J, Iglesias A, Estevinho ML. Characterization of artisanal honey produced on the Northwest of Portugal by melissopalynological and physico-chemical data. Food Chem Toxicol. 2010;48: 3462–3470. doi: 10.1016/j.fct.2010.09.024 PubMed DOI
del Pozo-Baños M, Ticay-Rivas JR, Alonso JB, Travieso CM. Features extraction techniques for pollen grain classification. Neurocomputing. 2015;150: 377–391. doi: 10.1016/j.neucom.2014.05.085 DOI
Pospiech M, Javůrková Z, Tremlová B, Běhalová H. Characterization of fruit trees pollen. Potravin Slovak J Food Sci. 2019;13: 634–643. doi: 10.5219/1096 DOI
LI P, Treloar WJ, Flenley JR, Empson L. Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J Quat Sci. 2004;19: 755–762. doi: 10.1002/jqs.874 DOI
Li P, Flenley JR. Pollen texture identification using neural networks. Grana. 1999;38: 59–64. doi: 10.1080/001731300750044717 DOI
Jones GD, Bryant VM. Pollen Studies of East Texas Honey. Palynology. 2014;38: 242–258. doi: 10.1080/01916122.2014.899276 DOI
Soares EL, Landi LADC, Gasparino EC. Additions to the knowledge of the pollen morphology of some Fabaceae from the cerrado’s forest patches of Brazil. Palynology. 2020; 1–16. doi: 10.1080/01916122.2020.1804007 DOI
Piper T, Piper J. Universal variable brightfield-darkfield contrast: A variant technique for improved imaging of problematic specimens in light microscopy. Microscopy and Microanalysis. 2013. pp. 1092–1105. doi: 10.1017/S143192761300158X PubMed DOI
Determann H, Lepusch F. Darkfield microscopy, phase contrast microscopy, interference contrast microscopy. Microsc Its Appl. 1981; 18–24. Available: https://scholar.google.cz/scholar?hl=cs&as_sdt=0%2C5&q=Darkfield+microscopy%2C+phase+contrast+microscopy%2C+interference+contrast+microscopy&btnG.
Piper T, Piper J. Variable phase bright-field contrast—An alternative illumination technique for improved imaging in transparent specimens. Microsc Microanal. 2013;19: 11–21. doi: 10.1017/S1431927612013323 PubMed DOI
Yin Z, Kanade T, Chen M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med Image Anal. 2012;16: 1047–1062. doi: 10.1016/j.media.2011.12.006 PubMed DOI PMC
Ullah F, Nasar Shah S, Zaman W, Zafar M, Ahmad M, Ayaz A, et al.. Using palynomorphological characteristics for the identification of species of Alsinoideae (Caryophyllaceae): a systematic approach. 2019. [cited 13 Jul 2021]. doi: 10.1080/00173134.2019.1569719 DOI
Gul S, Ahmad M, Zafar M, Bahadur S, Zaman W, Ayaz A, et al.. Palynological characteristics of selected Lamioideae taxa and its taxonomic significance. Microsc Res Tech. 2021;84: 471–479. doi: 10.1002/jemt.23603 PubMed DOI
Bahadur S, Ahmad M, Zafar M, Sultana S, Begum N, Ashfaq S, et al.. Palyno-anatomical studies of monocot taxa and its taxonomic implications using light and scanning electron microscopy. Microsc Res Tech. 2019;82: 373–393. doi: 10.1002/jemt.23179 PubMed DOI
Zhang M, Zhang K, Feng Q, Wang J, Kong J, Lu Y. A novel image retrieval method based on hybrid information descriptors. J Vis Commun Image Represent. 2014;25: 1574–1587. doi: 10.1016/j.jvcir.2014.06.016 DOI
Kaya Y, Erez ME, Karabacak O, Kayci L, Fidan M. An automatic identification method for the comparison of plant and honey pollen based on GLCM texture features and artificial neural network. Grana. 2013;52: 71–77. doi: 10.1080/00173134.2012.754050 DOI
Redondo R, Bueno G, Chung F, Nava R, Víctor Marcos J, Cristóbal G, et al.. Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Comput Electron Agric. 2015;110: 56–69. doi: 10.1016/j.compag.2014.09.020 DOI
Stillman EC, Flenleyt JR. THE NEEDS AND PROSPECTS FOR AUTOMATION IN PALYNOLOGY. Quat Sci Rev. 1996.
Treloar WJ, Taylor GE, Flenley JR. Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images. J Quat Sci. 2004;19: 745–754. doi: 10.1002/jqs.871 DOI
Zhang Y, Fountain DW, Hodgson RM, Flenley JR, Gunetileke S. Towards automation of palynology 3: pollen pattern recognition using Gabor transforms and digital moments. J Quat Sci. 2004;19: 763–768. doi: 10.1002/jqs.875 DOI
Holt K, Allen G, Hodgson R, Marsland S, Flenley J. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Rev Palaeobot Palynol. 2011;167: 175–183. doi: 10.1016/j.revpalbo.2011.08.006 DOI
Lagerstrom R, Holt K, Arzhaeva Y, Bischof L, Haberle S, Hopf F, et al.. Pollen image classification using the classifynder system: Algorithm comparison and a case study on New Zealand honey. Adv Exp Med Biol. 2015;823: 207–226. doi: 10.1007/978-3-319-10984-8_12 PubMed DOI
Punyasena SW, Tcheng DK, Wesseln C, Mueller PG. Classifying black and white spruce pollen using layered machine learning. New Phytol. 2012;196: 937–944. doi: 10.1111/j.1469-8137.2012.04291.x PubMed DOI
Jacinto-Pimienta SY, Mendoza-Hernández JHR, Zaldivar-Cruz JM, Sol-Sánchez Á, Vargas-Villamil LM, Reyes-Sánchez CA. El uso de componentes principales en la clasificación melisopalinológica de la miel de Apis mellifera L.* Use of principal component in melissopalynology classification of honey fromApis mellifera L. Rev Mex Ciencias Agrícolas. 2016;14: 2831–2840.
Pospiech M, Ljasovská S, Titěra D, Kružík V, Javurková Z, Tremlová B. Pollen Diversity in Honey of the Czech Republic in the 2019 Season. Potravin Slovak J Food Sci. 2020;14: 1115–1123. doi: 10.5219/1504 DOI
Pospiech M, Javůrková Z, Hrabec P, Čížková H, Titěra D, Štarha P, et al.. Physico-Chemical and Melissopalynological Characterization of Czech Honey. Appl Sci. 2021;11: 4989. doi: 10.3390/app11114989 DOI
Chica M. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing. Microsc Res Tech. 2012. doi: 10.1002/jemt.22091 PubMed DOI
Martõ Ânez AM, Kak AC. PCA versus LDA.
Wu Y, Wang C. Extended depth of focus image for phytolith analysis. J Archaeol Sci. 2009;36: 2253–2257. doi: 10.1016/j.jas.2009.06.010 DOI
Ticay-Rivas JR, Del Pozo-Baños M, Travieso CM, Arroyo-Hernández J, Pérez ST, Alonso JB, et al.. Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method. IFIP Advances in Information and Communication Technology. Springer New York LLC; 2011. pp. 342–349. doi: 10.1007/978-3-642-23960-1_41 DOI
Naila A, Flint SH, Sulaiman AZ, Ajit A, Weeds Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control. Elsevier Ltd; 2018. pp. 152–165. doi: 10.1016/j.foodcont.2018.02.027 DOI
Erdtman G. ON POLLEN AND SPORE TERMINOLOGY.
Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. Glossary of pollen and spore terminology. Rev Palaeobot Palynol. 2007;143: 1–81. doi: 10.1016/j.revpalbo.2006.06.008 DOI
Sevillano V, Holt K, Aznarte JL. Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS One. 2020;15: 1–15. doi: 10.1371/journal.pone.0229751 PubMed DOI PMC
El-Labban M. Beekeepers’ Guide For Pollen Identification Of Honey. Lebanon: Mohammad El-Labban; 2020.
von der Ohe K, Von Der Ohe W. Celle’s melissopalynological collection. 3. edition. Celle: LAVES—institut fur Bienenkunde Celle; 2007.
Kale Sniderman JM, Matley KA, Haberle SG, Cantrill DJ. Pollen analysis of Australian honey. PLoS One. 2018;13: 1–24. doi: 10.1371/journal.pone.0197545 PubMed DOI PMC
Boucher A, Hidalgo PJ, Thonnat M, Belmonte J, Galan C, Bonton P, et al.. Development of a semi-automatic system for pollen recognition. Aerobiologia. Springer; 2002. pp. 195–201. doi: 10.1023/A:1021322813565 DOI
Kaur H, Sharma SK, Sharma PC. Palynological Study of Pollens of Some Important Bee Floral Plants in Kangra District of Himachal Pradesh. Himachal J Agric Res. 2019Dec. Available: http://hjar.in/index.php/hjar/article/view/150382.
Radice S, Ontivero M, Andorno A, Dessy S. Floral morphology and pollen viability of the “forastero” cultivar [prunus persica (l.) batsch], as modified by the rootstock. Acta Horticulturae. 2004. doi: 10.17660/ActaHortic.2004.658.8 DOI
von der Ohe K, Dustmann JH. Scanning electron microscopic studies of pollen from honey. III. The harmomegathy mechanism and its effect on the exine structure of different pollen types. In German. Apidologie. 1990;21: 293–302. doi: 10.1051/apido:19900404 DOI
Lozano-Vega G, Benezeth Y, Marzani F, Boochs F. Analysis of relevant features for pollen classification. IFIP Advances in Information and Communication Technology. 2014. pp. 395–404. doi: 10.1007/978-3-662-44654-6_39 DOI
Kopanja L, Lončar B, Žunić D, Tadić M. Nanoparticle shapes: Quantification by elongation, convexity and circularity measures. J Electr Eng. 2019;70: 44–50. doi: 10.2478/jee-2019-0040 DOI
Halbritter H, Ulrich S, Grímsson F, Weber M, Zetter R, Hesse M, et al.. Illustrated Pollen Terminology. Illustrated Pollen Terminology. 2018. doi: 10.1007/978-3-319-71365-6 DOI
Pedersen B, Bailey DG, Hodgson RM, Holt K, Marsland S. Model and feature selection for the classification of dark field pollen images using the classifynder system. International Conference Image and Vision Computing New Zealand. IEEE Computer Society; 2018. pp. 1–5. doi: 10.1109/IVCNZ.2017.8402498 DOI
Cootes TF, Cooper DH, Taylor CJ, Graham J. Trainable method of parametric shape description. Image Vis Comput. 1992;10: 289–294. doi: 10.1016/0262-8856(92)90044-4 DOI
Sun S, Sundararaghavan V. A probabilistic crystal plasticity model for modeling grain shape effects based on slip geometry. Acta Mater. 2012;60: 5233–5244. doi: 10.1016/j.actamat.2012.05.039 DOI
Latypov MI, Kühbach M, Beyerlein IJ, Stinville JC, Toth LS, Pollock TM, et al.. Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Mater Charact. 2018;145: 671–685. doi: 10.1016/j.matchar.2018.09.020 DOI
Holt KA, Bebbington MS. Separating Morphologically Similar Pollen Types Using Basic Shape Features from Digital Images: A Preliminary Study. Appl Plant Sci. 2014;2: 1400032. doi: 10.3732/apps.1400032 PubMed DOI PMC
Agimelen OS, Hamilton P, Haley I, Nordon A, Vasile M, Sefcik J, et al.. Estimation of particle size distribution and aspect ratio of non-spherical particles from chord length distribution. Chem Eng Sci. 2015;123: 629–640. doi: 10.1016/j.ces.2014.11.014 DOI
Bonton P, Boucher A, Thonnat M, Tomczak R, Hidalgo PJ, Belmonte J, et al.. Colour Image in 2D and 3D Microscopy for the Automation of Pollen Rate Measurement. Image Anal Stereol. 2004;21: 25–30. doi: 10.5566/ias.v21.p25-30 DOI
Gallardo-Caballero R, García-Orellana CJ, García-Manso A, González-Velasco HM, Tormo-Molina R, Macías-Macías M. Precise pollen grain detection in bright field microscopy using deep learning techniques. Sensors (Switzerland). 2019;19: 3583. doi: 10.3390/s19163583 PubMed DOI PMC
Bagheri GH, Bonadonna C, Manzella I, Vonlanthen P. On the characterization of size and shape of irregular particles. Powder Technol. 2015;270: 141–153. doi: 10.1016/j.powtec.2014.10.015 DOI
Doyle JA. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana. Taylor and Francis A.S.; 2005. pp. 227–251. doi: 10.1080/00173130500424557 DOI
Hebda RJ, Chinnappa CC, Smith BM. Pollen morphology of the rosaceae of Western Canada:I. Agrimonia to crataegus. Grana. 1988;27: 95–113. doi: 10.1080/00173138809432836 DOI
Marcos JV, Nava R, Cristóbal G, Redondo R, Escalante-Ramírez B, Bueno G, et al.. Automated pollen identification using microscopic imaging and texture analysis. Micron. 2015;68: 36–46. doi: 10.1016/j.micron.2014.09.002 PubMed DOI
Mills M, Bonetti J, Brettell T, Quarino L. Differentiation of human hair by colour and diameter using light microscopy, digital imaging and statistical analysis. J Microsc. 2018;270: 27–40. doi: 10.1111/jmi.12646 PubMed DOI
Holt KA, Bennett KD. Principles and methods for automated palynology. New Phytol. 2014;203: 735–742. doi: 10.1111/nph.12848 PubMed DOI
Clarke EL, Treanor D. Colour in digital pathology: A review. Histopathology. Blackwell Publishing Ltd; 2017. pp. 153–163. doi: 10.1111/his.13079 PubMed DOI
Deagle RC, Wee TL (Erika), Brown CM. Reproducibility in light microscopy: Maintenance, standards and SOPs. Int J Biochem Cell Biol. 2017;89: 120–124. doi: 10.1016/j.biocel.2017.06.008 PubMed DOI
Gonçalves AB, Souza JS, Silva GG da, Cereda MP, Pott A, Naka MH, et al.. Feature extraction and machine learning for the classification of Brazilian Savannah pollen grains. Kestler HA, editor. PLoS One. 2016;11: e0157044. doi: 10.1371/journal.pone.0157044 PubMed DOI PMC
Mitsumoto K, Yabusaki K, Aoyagi H. Classification of pollen species using autofluorescence image analysis. J Biosci Bioeng. 2009;107: 90–94. doi: 10.1016/j.jbiosc.2008.10.001 PubMed DOI
Stacherzak A, Hájek L, Hełdak M. Changes in the use of agricultural land in Poland and Czech Republic. J Ecol Eng. 2019;20: 211–221. doi: 10.12911/22998993/109869 DOI
Čeksteryte V, Kurtinaitiene B, Balžekas J. Pollen diversity in honey collected from Lithuania’s protected landscape areas. Proc Est Acad Sci. 2013;62: 277–282. doi: 10.3176/proc.2013.4.08 DOI
Canini A, Pichichero E, Alesian D, Canuti L, Leonardi D. Nutritional and botanical interest of honey collected from protected natural areas. Plant Biosyst. 2009;143: 62–70. doi: 10.1080/11263500802633543 DOI
Ullah F, Zafar M, Ahmad M, Dilbar S, Shah SN, Sohail A, et al.. Pollen morphology of subfamily Caryophylloideae (Caryophyllaceae) and its taxonomic significance. Verkade P, editor. Microsc Res Tech. 2018;81: 704–715. doi: 10.1002/jemt.23026 PubMed DOI
Al-Watban AA, Al-Mogren E, Doaigey AR, Zaidy M El. African Journal of Plant Science Pollen morphology of seven wild species of Acacia in Saudi Arabia. African J Plant Sci. 2013;7: 602–607. doi: 10.5897/AJPS2012.0989 DOI
Mura-Mészáros A, Magyar D. Fungal Honeydew Elements as Potential Indicators of the Botanical and Geographical Origin of Honeys. Food Anal Methods. 2017;10: 3079–3087. doi: 10.1007/s12161-017-0862-x DOI
Daood A, Ribeiro E, Bush M. Pollen grain recognition using deep learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag; 2016. pp. 321–330. doi: 10.1007/978-3-319-50835-1_30 DOI
Sevillano V, Aznarte JL. Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. Rutherford S, editor. PLoS One. 2018;13: e0201807. doi: 10.1371/journal.pone.0201807 PubMed DOI PMC
Daood A, Ribeiro E, Bush M. Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018. 2018.
Saklani S, V. K M. Scanning Electron Microscopic Study on Pollens of 8 Bee Floral Resources from Kangra Hills, Himachal Pradesh, India. Int J Biotech Trends Technol. 2020;10: 67–71. doi: 10.14445/22490183/ijbtt-v10i1p611 DOI
Ajipe JO, Adebayo MB. The Significance of Palynology in Socio-economic Development in Nigeria. Adv Multidiscip Sci Res J. 2018;4: 51–58. Available: https://www.researchgate.net/publication/325257228.
Prosser SWJ, Hebert PDN. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 2017;214: 183–191. doi: 10.1016/j.foodchem.2016.07.077 PubMed DOI
Kaškoniene V, Venskutonis PR, Kaškonienė V, Venskutonis PR. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Compr Rev Food Sci Food Saf. 2010;9: 620–634. doi: 10.1111/j.1541-4337.2010.00130.x PubMed DOI
Chiara B, Francesco C, Fulvio B, Paola M, Annalisa G, Stefania S, et al.. Exploring the botanical composition of polyfloral and monofloral honeys through DNA metabarcoding. Food Control. 2021;128: 108175. doi: 10.1016/J.FOODCONT.2021.108175 DOI
Utzeri VJ, Ribani A, Schiavo G, Bertolini F, Bovo S, Fontanesi L. Application of next generation semiconductor based sequencing to detect the botanical composition of monofloral, polyfloral and honeydew honey. Food Control. 2018;86: 342–349. doi: 10.1016/j.foodcont.2017.11.033 DOI
Hawkins J, De Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, et al.. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS One. 2015;10. doi: 10.1371/journal.pone.0134735 PubMed DOI PMC
Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, et al.. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One. 2014;9. doi: 10.1371/journal.pone.0109363 PubMed DOI PMC
Bell KL, Burgess KS, Okamoto KC, Aranda R, Brosi BJ. Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet. 2016;21: 110–116. doi: 10.1016/j.fsigen.2015.12.010 PubMed DOI
Hollingsworth PM, Graham SW, Little DP. Choosing and Using a Plant DNA Barcode. doi: 10.1371/journal.pone.0019254 PubMed DOI PMC
Modern Comprehensive Metabolomic Profiling of Pollen Using Various Analytical Techniques