Modern Comprehensive Metabolomic Profiling of Pollen Using Various Analytical Techniques

. 2025 Mar 05 ; 30 (5) : . [epub] 20250305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40076395

Grantová podpora
24-10730S Czech Science Foundation
IGA_PrF_2024_026 Palacký University Olomouc

Pollen is a cornerstone of life for plants. Its durability, adaptability, and complex design are the key factors to successful plant reproduction, genetic diversity, and the maintenance of ecosystems. A detailed study of its chemical composition is important to understand the mechanism of pollen-pollinator interactions, pollination processes, and allergic reactions. In this study, a multimodal approach involving Fourier transform infrared spectrometry (FTIR), direct mass spectrometry with an atmospheric solids analysis probe (ASAP), matrix-assisted laser desorption/ionization (MALDI) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) was applied for metabolite profiling. ATR-FTIR provided an initial overview of the present metabolite classes. Phenylpropanoid, lipidic, and carbohydrate structures were revealed. The hydrophobic outer layer of pollen was characterized in detail by ASAP-MS profiling, and esters, phytosterols, and terpenoids were observed. Diacyl- and triacylglycerols and carbohydrate structures were identified in MALDI-MS spectra. The MALDI-MS imaging of lipids proved to be helpful during the microscopic characterization of pollen species in their mixture. Polyphenol profiling and the quantification of important secondary metabolites were performed by UHPLC-MS in context with pollen coloration and their antioxidant and antimicrobial properties. The obtained results revealed significant chemical differences among Magnoliophyta and Pinophyta pollen. Additionally, some variations within Magnoliophyta species were observed. The obtained metabolomics data were utilized for pollen differentiation at the taxonomic scale and provided valuable information in relation to pollen interactions during reproduction and its related applications.

Zobrazit více v PubMed

Edlund A.F., Swanson R., Preuss D. Pollen and stigma structure and function: The role of diversity in pollination. Plant Cell. 2004;16:84–97. doi: 10.1105/tpc.015800. PubMed DOI PMC

Borg M., Brownfield L., Twell D. Male gametophyte development: A molecular perspective. J. Exp. Bot. 2009;60:1465–1478. doi: 10.1093/jxb/ern355. PubMed DOI

Twell D., Park S.K., Lalanne E. Asymmetric division and cell-fate determination in developing pollen. Trends Plant Sci. 1998;3:305–310. doi: 10.1016/S1360-1385(98)01277-1. DOI

Devis D.L., Davies J.M., Zhang D. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention. Biotechnol. Adv. 2017;35:545–556. doi: 10.1016/j.biotechadv.2017.05.005. PubMed DOI

Ravindra K., Goyal A., Mor S. Pollen allergy: Developing multi-sectorial strategies for its prevention and control in lower and middle-income countries. Int. J. Hyg. Environ. Health. 2022;242:113951. doi: 10.1016/j.ijheh.2022.113951. PubMed DOI

Xie Z., Guan K., Yin J. Advances in the clinical and mechanism research of pollen induced seasonal allergic asthma. Am. J. Clin. Exp. Immunol. 2019;8:1–8. PubMed PMC

Frenguelli G. Pollen structure and morphology. Adv. Dermatol. Allergol. Postępy. Dermatol. I. Alergol. 2003;20:200–204.

Skvarla J.J., Nowicke J.W. Pollen morphology: The potential influence in higher order systematics. Ann. Mo. Bot. Gard. 1979;66:633–700. doi: 10.2307/2398914. DOI

Grienenberger E., Quilichini T.D. The toughest material in the plant kingdom: An update on sporopollenin. Front. Plant Sci. 2021;12:703864. doi: 10.3389/fpls.2021.703864. PubMed DOI PMC

Glinkerman C.M., Lin S., Ni J., Li F.S., Zhao X., Weng J.K. Sporopollenin-inspired design and synthesis of robust polymeric materials. Commun. Chem. 2022;5:110. doi: 10.1038/s42004-022-00729-w. PubMed DOI PMC

Jardine P.E., Abernethy F.A.J., Lomax B.H., Gosling W.D., Fraser W.T. Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Rev. Palaeobot. Palynol. 2017;238:1–6. doi: 10.1016/j.revpalbo.2016.11.014. DOI

Ferguson D.K., Zetter R., Paudayal K.N. The need for the SEM in palaeopalynology. Comptes. Rendus. Palevol. 2007;6:423–430. doi: 10.1016/j.crpv.2007.09.018. DOI

Pospiech M., Javůrková Z., Hrabec P., Štarha P., Ljasovská S., Bednář J., Tremlová B. Identification of pollen taxa by different microscopy techniques. PLoS ONE. 2021;16:e0256808. doi: 10.1371/journal.pone.0256808. PubMed DOI PMC

Kenđel A., Zimmermann B. Chemical analysis of pollen by FT-raman and FTIR spectroscopies. Front. Plant Sci. 2020;11:352. doi: 10.3389/fpls.2020.00352. PubMed DOI PMC

Schulte F., Lingott J., Panne U., Kneipp J. Chemical characterization and classification of pollen. Anal. Chem. 2008;80:9551–9556. doi: 10.1021/ac801791a. PubMed DOI

Fuente-Ballesteros A., Augé C., Bernal J., Ares A.M. Development and validation of a gas chromatography-mass spectrometry method for determining acaricides in bee pollen. Molecules. 2023;28:2497. doi: 10.3390/molecules28062497. PubMed DOI PMC

Aziza N., Khaydarov K., Zafar M., Alsakkaf W.A.A., Alkahtani J., Ahmad M., Makhkamov T., Djumayeva Z., Zengin G., Eshboyevich T.K., et al. Chromatographic authentication of botanical origin: Herbaceous pollen profiling with HPLC, HPTLC and GC–MS analysis. Biomed. Chromatogr. 2024;38:e5852. doi: 10.1002/bmc.5852. PubMed DOI

Zeghoud S., Rebiai A., Hemmami H., Ben Seghir B., Elboughdiri N., Ghareba S., Ghernaout D., Abbas N. ATR-FTIR spectroscopy, HPLC chromatography, and multivariate analysis for controlling bee pollen quality in some algerian regions. ACS Omega. 2021;6:4878–4887. doi: 10.1021/acsomega.0c05816. PubMed DOI PMC

Krejčí P., Balarynová J., Nádvorníková J., Kučera L., Tesárek M., Smýkal P., Bednář P. Application of modified ASAP-MS technique for direct analysis of plant microsamples and its potential for single pollen grain chemical characterization. Microchem. J. 2024 submitted.

Lauer F., Seifert S., Kneipp J., Weidner S.M. Simplifying the preparation of pollen grains for MALDI-TOF MS classification. Int. J. Mol. Sci. 2017;18:543. doi: 10.3390/ijms18030543. PubMed DOI PMC

Mularczyk-Oliwa M., Bombalska A., Kaliszewski M., Włodarski M., Kopczyński K., Kwaśny M., Szpakowska M., Trafny E.A. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens. Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 2012;97:246–254. doi: 10.1016/j.saa.2012.05.063. PubMed DOI

Park J., Kim J.E., Jin Y.J., Roh Y.J., Song H.J., Seol A., Park S.H., Seo S., Lee H., Hwang D.Y. Anti-atopic dermatitis effects of abietic acid isolated from rosin under condition optimized by response surface methodology in DNCB-spread BALB/c Mice. Pharmaceuticals. 2023;16:407. doi: 10.3390/ph16030407. PubMed DOI PMC

Krejčí P., Cechová M.Z., Nádvorníková J., Barták P., Kobrlová L., Balarynová J., Smýkal P., Bednář P. Combination of electronically driven micromanipulation with laser desorption ionization mass spectrometry—The unique tool for analysis of seed coat layers and revealing the mystery of seed dormancy. Talanta. 2022;242:123303. doi: 10.1016/j.talanta.2022.123303. PubMed DOI

Cao Y., Xia Q., Aniya, Chen J., Jin Z. Copigmentation effect of flavonols on anthocyanins in black mulberry juice and their interaction mechanism investigation. Food Chem. 2023;399:133927. doi: 10.1016/j.foodchem.2022.133927. PubMed DOI

Torres-Rochera B., Manjón E., Brás N.F., Escribano-Bailón M.T., García-Estévez I. Supramolecular study of the interactions between malvidin-3-O-glucoside and wine phenolic compounds: Influence on color. J. Agric. Food Chem. 2024;72:1894–1901. doi: 10.1021/acs.jafc.2c08502. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...