Cytomolecular trends in Chamaecrista Moench (Caesalpinioideae, Leguminosae) diversification
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2021/00224-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
PIE0023/2016
Fundação de Apoio à Pesquisa do Estado da Bahia
APQ-0970-2.03/15
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
PQ-312852/2021-5
Conselho Nacional de Desenvolvimento Científico e Tecnológico
CBB-APQ-02347-11
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
PubMed
38381186
DOI
10.1007/s10709-024-00205-4
PII: 10.1007/s10709-024-00205-4
Knihovny.cz E-zdroje
- Klíčová slova
- trnL-trnF, C-value, Genome size, ITS1–5.8S–ITS2, Karyotype evolution, Ribosomal DNA,
- MeSH
- Chamaecrista * genetika MeSH
- chromozomy rostlin genetika MeSH
- Fabaceae * genetika MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- karyotyp MeSH
- polyploidie MeSH
- ribozomální DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální DNA MeSH
Chamaecrista is a Pantropical legume genus of the tribe Cassieae, which includes six other genera. In contrast to most of the other Cassieae genera, Chamaecrista shows significant variability in chromosome number (from 2n = 14 to 2n = 56), with small and morphologically similar chromosomes. Here, we performed a new cytomolecular analysis on chromosome number, genome size, and rDNA site distribution in a molecular phylogenetic perspective to interpret the karyotype trends of Chamaecrista and other two genera of Cassieae, seeking to understand their systematics and evolution. Our phylogenetic analysis revealed that Chamaecrista is monophyletic and can be divided into four major clades corresponding to the four sections of the genus. Chromosome numbers ranged from 2n = 14, 16 (section Chamaecrista) to 2n = 28 (sections Absus, Apoucouita, and Baseophyllum). The number of 5S and 35S rDNA sites varied between one and three pairs per karyotype, distributed on different chromosomes or in synteny, with no obvious phylogenetic significance. Our data allowed us to propose x = 7 as the basic chromosome number of Cassieae, which was changed by polyploidy generating x = 14 (sections Absus, Apoucouita, and Baseophyllum) and by ascending dysploidy to x = 8 (section Chamaecrista). The DNA content values supported this hypothesis, with the genomes of the putative tetraploids being larger than those of the putative diploids. We hypothesized that ascending dysploidy, polyploidy, and rDNA amplification/deamplification are the major events in the karyotypic diversification of Chamaecrista. The chromosomal marks characterized here may have cytotaxonomic potential in future studies.
Zobrazit více v PubMed
Bandel G (1974) Chromosome numbers and evolution in the Leguminosae. Caryologia 27 1:17–32. https://doi.org/10.1080/00087114.1974.10796558 DOI
Biondo E, Miotto STS, Schifino-Wittmann MT (2005) Números cromossômicos e implicações sistemáticas em espécies Da subfamília Caesalpinioideae (Leguminosae) ocorrentes na região Sul do Brasil. Rev Bras Botânica 28:797–808. https://doi.org/10.1590/S0100-84042005000400014 DOI
Biondo E, Miotto STS, Schifino-Wittmann MT (2006) Cytogenetics of species of Chamaecrista (Leguminosae – Caesalpinioideae) native to southern Brazil. Bot J Linn Soc 150:429–439. https://doi.org/10.1111/j.1095-8339.2006.00480.x DOI
Cannon SB, McKain MR, Harkess A et al (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210. https://doi.org/10.1093/molbev/msu296 PubMed DOI
Chiavegatto RB, Carta A, Pereira DGS et al (2020) Reconstructing ancestral chromosome numbers and inflorescence features in Eleusininae (Poaceae: Chloridoideae: Cynodonteae). Bot J Linn Soc 193:402–418. https://doi.org/10.1093/botlinnean/boaa015 DOI
Clarkson JJ, Dodsworth S, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst Evol 303:1001–1012. https://doi.org/10.1007/s00606-017-1416-9 DOI
Conceição AS, Queiroz LP, Lewis GP et al (2009) Phylogeny of Chamaecrista Moench (LeguminosaeCaesalpinioideae) based on nuclear and chloroplast DNA regions. Taxon 58:1168–1180. https://doi.org/10.1002/tax.584010 DOI
Cordeiro JMP, Felix LP (2018) Intra- and interspecific karyotypic variations of the genus Senna Mill. Caesalpinioideae) Acta Bot Brasilica 32:128–134. https://doi.org/10.1590/0102-33062017abb0274 . Fabaceae DOI
de Souza AO, Lewis GP, da Silva MJ (2021) A new infrageneric classification of the pantropical genus Chamaecrista (Fabaceae: Caesalpinioideae) based on a comprehensive molecular phylogenetic analysis and morphology. Bot J Linn Soc 1–46. https://doi.org/10.1093/botlinnean/boab029
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310 PubMed DOI
Dong F, Song J, Naess SK et al (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007. https://doi.org/10.1007/s001220051573 DOI
Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
Du Y, Bi Y, Zhang M et al (2017) Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Front Plant Sci 8:1–11. https://doi.org/10.3389/fpls.2017.01303 DOI
Fidalgo O, Bononi V (1984) Técnicas De Coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo
Gagnon E, Ringelberg JJ, Bruneau A et al (2019) Global succulent biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytol 222:1994–2008. https://doi.org/10.1111/nph.15633 PubMed DOI
Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of Polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922. https://doi.org/10.1093/molbev/msu122 PubMed DOI
Guerra M, Souza MD (2002) Como observar cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. FUNPEC, Ribeirão Preto, p 201
Irwin HS, Turner BL (1960) Chromosomal relationships and taxonomic considerations in the genus Cassia. Am J Bot 47:309–318. https://doi.org/10.1002/j.1537-2197.1960.tb07130.x DOI
Koenen EJM, Ojeda DI, Bakker FT et al (2021) The origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle closely Associated with the cretaceous–paleogene (K–Pg) Mass extinction event. Syst Biol 70:508–526. https://doi.org/10.1093/sysbio/syaa041 PubMed DOI
Kovarik A, Dadejova M, Lim YK et al (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823. https://doi.org/10.1093/aob/mcn019 PubMed DOI PMC
Legendre P, Legendre L (2012) Numerical ecology. Elsevier
Legume Phylogeny Working Group (LPWG) (2023) The World checklist of vascular plants (WCVP): Fabaceae. Royal Botanic Gardens Kew. https://doi.org/10.15468/mvhaj3 DOI
Lewis G (2005) Tribo Cassieae. In: Schrire B, Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 111–124
Lyu H, He Z, Wu C-I, Shi S (2018) Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol 217:428–438. https://doi.org/10.1111/nph.14784 PubMed DOI
Maddison W, Maddison D (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://www.mesquiteproject.org
Marazzi B, Sanderson MJ (2010) Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evol (NY) 64:3570–3592. https://doi.org/10.1111/j.1558-5646.2010.01086.x DOI
Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2 C values for 70 species. Biol Cell 78:41–51. https://doi.org/10.1016/0248-4900(93)90113-S PubMed DOI
Mata-Sucre Y, Sader M, Van-Lume B et al (2020) How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon Hughesii Gagnon & GP Lewis (Leguminosae: Caesalpinioideae). Planta 252:1–14. https://doi.org/10.1007/s00425-020-03453-8 DOI
Mata-Sucre Y, Costa L, Gagnon E et al (2020a) Revisiting the cytomolecular evolution of the Caesalpinia group (Leguminosae): a broad sampling reveals new correlations between cytogenetic and environmental variables. Plant Syst Evol 306:48. https://doi.org/10.1007/s00606-020-01674-8 DOI
Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of Polyploidy. Syst Biol 59:132–144. https://doi.org/10.1093/sysbio/syp083 PubMed DOI
Montenegro C, do Vale Martins L, Bustamante FO et al (2022) Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. Chromosome Res 1–16. https://doi.org/10.1007/s10577-022-09702-8
Ohri D, Kumar A, Pal M (1986) Correlations between 2 C DNA values and habit in Cassia (Leguminosae:Caesalpinioideae). Plant Syst Evol 153:223–227. https://doi.org/10.1007/BF00983689 DOI
Pellerin RJ, Waminal NE, Kim HH (2019) FISH mapping of rDNA and telomeric repeats in 10 Senna species. Hortic Environ Biotechnol 60:253–260. https://doi.org/10.1007/s13580-018-0115-y DOI
Posada D (2008) jModelTest: phylogenetic Model Averaging. Mol Biol Evol 25:1253–1256. https://doi.org/10.1093/molbev/msn083 PubMed DOI
Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular biology and evolution 26:1641–1650. https://doi.org/10.1093/molbev/msp077
Puttick MN, Clark J, Donoghue PCJ (2015) Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in Angiosperms. Proc R Soc B Biol Sci 282:20152289. https://doi.org/10.1098/rspb.2015.2289 DOI
Qiu F, Baack EJ, Whitney KD et al (2019) Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytol 221:1609–1618. https://doi.org/10.1111/nph.15465 PubMed DOI
Rambaut A (2007) FigTree, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree
Rando JG, Pirani JR (2011) Padrões de distribuição geográfica das espécies de Chamaecrista sect. Chamaecrista ser. Coriaceae (Benth.) H.S.Irwin & Barneby, Leguminosae - Caesalpinioideae. Brazilian J Bot 34:499–513. https://doi.org/10.1590/S0100-84042011000400004
Rando JG, Zuntini AR, Conceição AS et al (2016) Phylogeny of Chamaecrista ser. Coriaceae (Leguminosae) Unveils a Lineage Recently Diversified in Brazilian Campo Rupestre Vegetation. Int J Plant Sci 177:3–17. https://doi.org/10.1086/683846
Rando JG, Cota MMT, de Lima AG et al (2023) Tribe Cassieae. In: Bruneau A, Ringelberg J, Queiroz LP (Eds) Advances in Legume Systematics 14. Classification of Caesalpinioideae Part 2. In Press, Phytokeys
Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930 PubMed DOI
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180 PubMed DOI
Rosito JM, Batista LRM (1985) Leguminosas Caesalpinioideae E Mimosoideae nativas do RS, com valor forrageiro - Uma Revisão. Ciência e Nat 7:163. https://doi.org/10.5902/2179460X25420 DOI
Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216. https://doi.org/10.1016/j.tig.2011.03.004 PubMed DOI
Souza V, Bortoluzzi R (2015) Chamaecrista Moench. In: List. Espécies da Flora do Bras. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB22876
Souza V, Lorenzi H (2008) Botânica Sistemática: guia ilustrado para identificação das familias brasileiras de fanerógamas nativas e exóticas no Brasil, baseado em APG II. Instituto Plantarum, Nova Odessa
Souza LGR, Crosa O, Speranza P, Guerra M (2012) Cytogenetic and molecular evidence suggest multiple origins and geographical parthenogenesis in Nothoscordum gracile (Alliaceae). Ann Bot 109:987–999. https://doi.org/10.1093/aob/mcs020 PubMed DOI PMC
Souza G, Crosa O, Guerra M (2015) Karyological, morphological, and phylogenetic diversification in Leucocoryne Lindl (Allioideae, Amaryllidaceae). Plant Syst Evol 301:2013–2023. https://doi.org/10.1007/s00606-015-1216-z DOI
Souza G, Costa L, Guignard MS et al (2019) Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspect Plant Ecol Evol Syst 38:13–23. https://doi.org/10.1016/j.ppees.2019.03.002 DOI
Suda J, Kron P, Husband BC, Trávníček P (2007) Flow Cytometry and Ploidy: applications in Plant Systematics, Ecology and Evolutionary Biology. In: Doležel J, Greilhuber J, Suda J (eds) Flow Cytometry with Plant cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 103–130 DOI
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. https://doi.org/10.1007/BF00037152 PubMed DOI
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673 PubMed DOI PMC
Torres DC, Lima JPMS, Fernandes AG et al (2011) Phylogenetic relationships within Chamaecrista sect. Xerocalyx (Leguminosae, Caesalpinioideae) inferred from the cpDNA trne-trnt intergenic spacer and nrDNA ITS sequences. Genet Mol Biol 34:244–251. https://doi.org/10.1590/S1415-47572011000200014 PubMed DOI PMC
Vallès J, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetic studies in western Mediterranean Juniperus (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. Tree Genet Genomes 11:43. https://doi.org/10.1007/s11295-015-0860-3 DOI
Van-Lume B, Esposito T, Diniz-Filho JAF et al (2017) Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): relationships between phylogenetic and cytogeographical data. Perspect Plant Ecol Evol Syst 29:51–63. https://doi.org/10.1016/j.ppees.2017.11.004 DOI
Waminal NE, Pellerin RJ, Kang SH, Kim HH (2021) Chromosomal mapping of Tandem Repeats revealed massive chromosomal rearrangements and insights into Senna tora Dysploidy. Front Plant Sci 12:1–13. https://doi.org/10.3389/fpls.2021.629898 DOI
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA gene for phylogenetics. In: PCR Protocols. Elsevier, pp 315–322
Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. https://doi.org/10.1038/35072009 PubMed DOI
Youn SM, Kim HH (2018) Chromosome karyotyping of Senna covesii and S. floribunda based on Triple-color FISH mapping of rDNAs and telomeric repeats. Plant Breed Biotechnol 6:51–56. https://doi.org/10.9787/PBB.2018.6.1.51