Long-Term In Vitro Culture Alters Gene Expression Pattern of Genes Involved in Ontological Groups Representing Cellular Processes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Hatch project nc07082
National Institute of Food and Agriculture
PubMed
39000215
PubMed Central
PMC11241590
DOI
10.3390/ijms25137109
PII: ijms25137109
Knihovny.cz E-zdroje
- Klíčová slova
- RNA processing, cell adhesion, cell migration, intercellular communication, reproductive biology,
- MeSH
- buněčné kultury metody MeSH
- epitelové buňky * metabolismus cytologie MeSH
- kultivované buňky MeSH
- prasata MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- vejcovody u zvířat metabolismus cytologie MeSH
- vejcovody metabolismus cytologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 812 Poznan Poland
Department of Veterinary Surgery Nicolaus Copernicus University in Toruń 87 100 Toruń Poland
Division of Anatomy and Histology University of Zielona Góra 65 417 Zielona Góra Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Avilés M., Coy P., Rizos D. The oviduct: A key organ for the success of early reproductive events. Anim. Front. 2015;5:25–31. doi: 10.2527/af.2015-0005. DOI
Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI
Kölle S., Hughes B., Steele H. Early embryo-maternal communication in the oviduct: A review. Mol. Reprod. Dev. 2020;87:650–662. doi: 10.1002/mrd.23352. PubMed DOI
Kölle S., Reese S., Kummer W. New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology. 2010;73:786–795. doi: 10.1016/j.theriogenology.2009.11.002. PubMed DOI
Li S., Winuthayanon W. Oviduct: Roles in fertilization and early embryo development. J. Endocrinol. 2017;232:R1–R26. doi: 10.1530/JOE-16-0302. PubMed DOI
Sun S., Shin J., Jang J., Hwang S., Kim J., Kong J., Yang H. 17Beta-Estradiol Regulates NUCB2/ Nesfatin-1 Expression in MouseOviduct. Dev. Reprod. 2020;24:43. doi: 10.12717/DR.2020.24.1.43. PubMed DOI PMC
Chen S., Palma-Vera S.E., Kempisty B., Rucinski M., Vernunft A., Schoen J. In Vitro Mimicking of Estrous Cycle Stages: Dissecting the Impact of Estradiol and Progesterone on Oviduct Epithelium. Endocrinology. 2018;159:3421–3432. doi: 10.1210/en.2018-00567. PubMed DOI
Barton B.E., Herrera G.G., Anamthathmakula P., Rock J.K., Willie A.M., Harris E.A., Takemaru K.I., Winuthayanon W. Roles of steroid hormones in oviductal function. Reproduction. 2020;159:R125. doi: 10.1530/REP-19-0189. PubMed DOI PMC
Wu E., Vastenhouw N.L. From mother to embryo: A molecular perspective on zygotic genome activation. Curr. Top. Dev. Biol. 2020;140:209–254. doi: 10.1016/BS.CTDB.2020.02.002. PubMed DOI
Duranthon V., Watson A.J., Lonergan P. Preimplantation embryo programming: Transcription, epigenetics, and culture environment. Reproduction. 2008;135:141–150. doi: 10.1530/REP-07-0324. PubMed DOI
Leese H.J., Hugentobler S.A., Gray S.M., Morris D.G., Sturmey R.G., Whitear S.L., Sreenan J.M. Female reproductive tract fluids: Composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 2008;20:1–8. doi: 10.1071/RD07153. PubMed DOI
Bauersachs S., Wolf E. Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim. Reprod. Sci. 2012;134:84–94. doi: 10.1016/j.anireprosci.2012.08.015. PubMed DOI
Kulus M., Kranc W., Wojtanowicz-markiewicz K., Celichowski P., Światły-Błaszkiewicz A., Matuszewska E., Sujka-kordowska P., Konwerska A., Zdun M., Bryl R., et al. New Gene Markers Expressed in Porcine Oviductal Epithelial Cells Cultured Primary In Vitro Are Involved in Ontological Groups Representing Physiological Processes of Porcine Oocytes. Int. J. Mol. Sci. 2021;22:2082. doi: 10.3390/ijms22042082. PubMed DOI PMC
Hasan M.M., Viil J., Lättekivi F., Ord J., Reshi Q.U.A., Jääger K., Velthut-Meikas A., Andronowska A., Jaakma Ü., Salumets A., et al. Bovine Follicular Fluid and Extracellular Vesicles Derived from Follicular Fluid Alter the Bovine Oviductal Epithelial Cells Transcriptome. Int. J. Mol. Sci. 2020;21:5365. doi: 10.3390/ijms21155365. PubMed DOI PMC
Danesh Mesgaran S., Sharbati J., Einspanier R., Gabler C. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages. Reprod. Biol. Endocrinol. 2016;14:44. doi: 10.1186/s12958-016-0176-7. PubMed DOI PMC
Kulus M., Józkowiak M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Bukowska D., Brüssow K.P., et al. “Cell cycle process”, “cell division” and “cell proliferation” belong to ontology groups highly regulated during long–term culture of porcine oviductal epithelial cells. Med. J. Cell Biol. 2019;7:15–24. doi: 10.2478/acb-2019-0003. DOI
Kulus M., Kulus J., Popis M., Borowiec B., Stefańska K., Celichowski P., Nawrocki M.J., Brüssow K.P., Kempisty B., Jeseta M., et al. “Cell cycle” and ‘cell death’-Related genes are differentially expressed during long—Term in vitro real-time cultivation of porcine oviductal epithelial cells. Med. J. Cell Biol. 2019;7:90–99. doi: 10.2478/acb-2019-0012. DOI
Chen S., Einspanier R., Schoen J. Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive in vitro model for reproductive science. Theriogenology. 2013;80:862–869. doi: 10.1016/j.theriogenology.2013.07.011. PubMed DOI
Chamier-Gliszczyńska A., Brazert M., Sujka-Kordowska P., Popis M., Ozegowska K., Stefańska K., Kocherova I., Celichowski P., Kulus M., Bukowska D., et al. Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture—A transcriptomic study. Med. J. Cell Biol. 2018;6:163–173. doi: 10.2478/acb-2018-0026. DOI
Stefańska K., Kocherova I., Knap S., Kulus M., Celichowski P., Jeseta M. The genes regulating maintenance of cellular protein location are differentially expressed in porcine epithelial oviductal cells during longterm in vitro cultivation. Med. J. Cell Biol. 2019;7:77–85. doi: 10.2478/acb-2019-0010. DOI
Stefańska K., Knap S., Kulus M., Kocherova I., Celichowski P., Jeseta M., Machatkova M., Bukowska D., Antosik P. Differential expression pattern of genes involved in oxygen metabolism in epithelial oviductal cells during primary in vitro culture. Med. J. Cell Biol. 2019;7:66–76. doi: 10.2478/acb-2019-0009. DOI
Bendarska-Czerwińska A., Zmarzły N., Morawiec E., Panfil A., Bryś K., Czarniecka J., Ostenda A., Dziobek K., Sagan D., Boroń D., et al. Endocrine disorders and fertility and pregnancy: An update. Front. Endocrinol. 2023;13:970439. doi: 10.3389/fendo.2022.970439. PubMed DOI PMC
Medeiros F., Muto M.G., Lee Y., Elvin J.A., Callahan M.J., Feltmate C., Garber J.E., Cramer D.W., Crum C.P. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 2006;30:230–236. doi: 10.1097/01.pas.0000180854.28831.77. PubMed DOI
Kim J., Coffey D.M., Creighton C.J., Yu Z., Hawkins S.M., Matzuk M.M. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc. Natl. Acad. Sci. USA. 2012;109:3921–3926. doi: 10.1073/pnas.1117135109. PubMed DOI PMC
Labidi-Galy S.I., Papp E., Hallberg D., Niknafs N., Adleff V., Noe M., Bhattacharya R., Novak M., Jones S., Phallen J., et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 2017;8:1093. doi: 10.1038/s41467-017-00962-1. PubMed DOI PMC
Kyo S., Ishikawa N., Nakamura K., Nakayama K. The fallopian tube as origin of ovarian cancer: Change of diagnostic and preventive strategies. Cancer Med. 2020;9:421. doi: 10.1002/cam4.2725. PubMed DOI PMC
Monde’jarmonde’jar I., Acunã O.S., Izquierdo-Rico M.J., Coy P., Avile’s M.A. The Oviduct: Functional Genomic and Proteomic Approach. Reprod. Domest. Anim. 2012;47:22–29. doi: 10.1111/j.1439-0531.2012.02027.x. PubMed DOI
Maillo V., Lopera-Vasquez R., Hamdi M., Gutierrez-Adan A., Lonergan P., Rizos D. Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology. 2016;86:443–450. doi: 10.1016/j.theriogenology.2016.04.060. PubMed DOI
Maillo V., Gaora P., Forde N., Besenfelder U., Havlicek V., Burns G.W., Spencer T.E., Gutierrez-Adan A., Lonergan P., Rizos D. Oviduct-embryo interactions in cattle: Two-way traffic or a one-way street? Biol. Reprod. 2015;92:144–145. doi: 10.1095/biolreprod.115.127969. PubMed DOI PMC
White K.L., Hehnke K., Rickords L.F., Southern L.L., Thompson D.L., Wood T.C. Early Embryonic Development in Vitro by Coculture with Oviductal Epithelial Cells in Pigs. Biol. Reprod. 1989;41:425–430. doi: 10.1095/biolreprod41.3.425. PubMed DOI
Graf A., Krebs S., Heininen-Brown M., Zakhartchenko V., Blum H., Wolf E. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci. 2014;149:46–58. doi: 10.1016/j.anireprosci.2014.05.016. PubMed DOI
Budna J., Celichowski P., Knap S., Jankowski M., Magas M., Nawrocki M.J., Ramlau P., Nowicki A., Rojewska M., Chermuła B., et al. Fatty acids related genes expression undergo substantial changes in porcine oviductal epithelial cells during long-term primary culture. Med. J. Cell Biol. 2018;6:39–47. doi: 10.2478/acb-2018-0008. DOI
AmiGO 2: Term Details for “Cell Adhesion” (GO:0007155) [(accessed on 16 March 2024)]. Available online: https://amigo.geneontology.org/amigo/term/GO:0007155.
Croxatto H.B. Physiology of gamete and embryo transport through the Fallopian tube. Reprod. Biomed. Online. 2002;4:160–169. doi: 10.1016/S1472-6483(10)61935-9. PubMed DOI
Talbot P., Shur B.D., Myles D.G. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol. Reprod. 2003;68:1–9. doi: 10.1095/biolreprod.102.007856. PubMed DOI
D’Occhio M.J., Campanile G., Zicarelli L., Visintin J.A., Baruselli P.S. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation—Role in establishing a pregnancy in cattle: A review. Mol. Reprod. Dev. 2020;87:206–222. doi: 10.1002/mrd.23312. PubMed DOI
Koch C.M., Joussen S., Schellenberg A., Lin Q., Zenke M., Wagner W. Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell. 2012;11:366–369. doi: 10.1111/j.1474-9726.2011.00784.x. PubMed DOI
Rubin H. Cell aging in vivo and in vitro. Mech. Ageing Dev. 1997;98:1–35. doi: 10.1016/S0047-6374(97)00067-5. PubMed DOI
Kulus M., Kranc W., Sujka-Kordowska P., Mozdziak P., Jankowski M., Konwerska A., Kulus J., Bukowska D., Skowroński M., Piotrowska-Kempisty H., et al. The processes of cellular growth, aging, and programmed cell death are involved in lifespan of ovarian granulosa cells during short-term IVC—Study based on animal model. Theriogenology. 2020;148:76–88. doi: 10.1016/j.theriogenology.2020.02.044. PubMed DOI
Chermuła B., Kranc W., Jopek K., Budna-Tukan J., Hutchings G., Dompe C., Moncrieff L., Janowicz K., Józkowiak M., Jeseta M., et al. Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging—A Study of New Molecular Markers. Cells. 2020;9:1265. doi: 10.3390/cells9051265. PubMed DOI PMC
Banliat C., Tsikis G., Labas V., Teixeira-Gomes A.P., Com E., Lavigne R., Pineau C., Guyonnet B., Mermillod P., Saint-Dizier M. Identification of 56 Proteins Involved in Embryo–Maternal Interactions in the Bovine Oviduct. Int. J. Mol. Sci. 2020;21:466. doi: 10.3390/ijms21020466. PubMed DOI PMC
Pillai V.V., Weber D.M., Phinney B.S., Selvaraj V. Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS ONE. 2017;12:e0188105. doi: 10.1371/journal.pone.0188105. PubMed DOI PMC
Cebrian-Serrano A., Salvador I., García-Roselló E., Pericuesta E., Pérez-Cerezales S., Gutierrez-Adán A., Coy P., Silvestre M.A. Effect of the Bovine Oviductal Fluid on In Vitro Fertilization, Development and Gene Expression of In Vitro-Produced Bovine Blastocysts. Reprod. Domest. Anim. 2013;48:331–338. doi: 10.1111/j.1439-0531.2012.02157.x. PubMed DOI
Pradeep M.A., Jagadeesh J., De A.K., Kaushik J.K., Malakar D., Kumar S., Dang A.K., Das S.K., Mohanty A.K. Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development. Theriogenology. 2011;75:1005–1015. doi: 10.1016/j.theriogenology.2010.11.007. PubMed DOI
Buhi W.C. Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction. 2002;123:355–362. doi: 10.1530/rep.0.1230355. PubMed DOI
Zhang N., Mao W., Zhang Y., Huang N., Liu B., Gao L., Zhang S., Cao J. The prostaglandin E2 receptor PTGER2 and prostaglandin F2α receptor PTGFR mediate oviductal glycoprotein 1 expression in bovine oviductal epithelial cells. J. Reprod. Dev. 2018;64:101–108. doi: 10.1262/jrd.2017-076. PubMed DOI PMC
Choudhary S., Kumaresan A., Kumar M., Chhillar S., Malik H., Kumar S., Kaushik J.K., Datta T.K., Mohanty A.K. Effect of recombinant and native buffalo OVGP1 on sperm functions and in vitro embryo development: A comparative study. J. Anim. Sci. Biotechnol. 2017;8:69. doi: 10.1186/s40104-017-0201-5. PubMed DOI PMC
Nelson R.N., Chakravarthi V.P., Ratri A., Hong X., Gossen J.A., Christenson L.K. Granulosa Cell Specific Loss of Adar in Mice Delays Ovulation, Oocyte Maturation and Leads to Infertility. Int. J. Mol. Sci. 2022;23:14001. doi: 10.3390/ijms232214001. PubMed DOI PMC
Moniaux N., Escande F., Batra S.K., Porchet N., Laine A., Aubert J.P. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur. J. Biochem. 2000;267:4536–4544. doi: 10.1046/j.1432-1327.2000.01504.x. PubMed DOI
Yeh J.C., Ong E., Fukuda M. Molecular cloning and expression of a novel beta-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 1999;274:3215–3221. doi: 10.1074/jbc.274.5.3215. PubMed DOI
Redzovic A., Laskarin G., Dominovic M., Haller H., Rukavina D. Mucins help to avoid alloreactivity at the maternal fetal interface. Clin. Dev. Immunol. 2013;2013:542152. doi: 10.1155/2013/542152. PubMed DOI PMC
Jang J.S., Lee J.H., Jung N.C., Choi S.Y., Park S.Y., Yoo J.Y., Song J.Y., Seo H.G., Lee H.S., Lim D.S. Rsad2 is necessary for mouse dendritic cell maturation via the IRF7-mediated signaling pathway. Cell Death Dis. 2018;9:823. doi: 10.1038/s41419-018-0889-y. PubMed DOI PMC
Song G., Bazer F.W., Spencer T.E. Pregnancy and interferon tau regulate RSAD2 and IFIH1 expression in the ovine uterus. Reproduction. 2007;133:285–295. doi: 10.1530/REP-06-0092. PubMed DOI
Schmaltz-Panneau B., Cordova A., Dhorne-Pollet S., Hennequet-Antier C., Uzbekova S., Martinot E., Doret S., Martin P., Mermillod P., Locatelli Y. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci. 2014;149:103–116. doi: 10.1016/j.anireprosci.2014.06.022. PubMed DOI
Huang Y., Qi S.H., Shu B., Chen L., Xie J.L., Xu Y.B., Liu X.S. Fibroblast growth factor-binding protein facilitates the growth and migration of skin-derived precursors. J. Cutan. Med. Surg. 2011;15:201–209. doi: 10.2310/7750.2011.10049. PubMed DOI
Abuharbeid S., Czubayko F., Aigner A. The fibroblast growth factor-binding protein FGF-BP. Int. J. Biochem. Cell Biol. 2006;38:1463–1468. doi: 10.1016/j.biocel.2005.10.017. PubMed DOI
Taetzsch T., Brayman V.L., Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Pt BBiochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018;1864:2983–2991. doi: 10.1016/J.BBADIS.2018.06.009. PubMed DOI PMC
Lee H.O., Choe H., Seo K., Lee H., Lee J., Kim J. Fgfbp1 is essential for the cellular survival during zebrafish embryogenesis. Mol. Cells. 2010;29:501–507. doi: 10.1007/s10059-010-0062-7. PubMed DOI
Lee J.A., Yerbury J.J., Farrawell N., Shearer R.F., Constantinescu P., Hatters D.M., Schroder W.A., Suhrbier A., Wilson M.R., Saunders D.N., et al. SerpinB2 (PAI-2) Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation. PLoS ONE. 2015;10:e0130136. doi: 10.1371/journal.pone.0130136. PubMed DOI PMC
Wyatt A.R., Cater J.H., Ranson M. PZP and PAI-2: Structurally-diverse, functionally similar pregnancy proteins? Int. J. Biochem. Cell Biol. 2016;79:113–117. doi: 10.1016/j.biocel.2016.08.018. PubMed DOI
Kim J., Jang K.T., Kim K.H., Park J.W., Chang B.J., Lee K.H., Lee J.K., Heo J.S., Choi S.H., Choi D.W., et al. Aberrant maspin expression is involved in early carcinogenesis of gallbladder cancer. Tumour Biol. 2010;31:471–476. doi: 10.1007/s13277-010-0056-2. PubMed DOI
Sinha K.K., Vinay J., Parida S., Singh S.P., Dixit M. Association and functional significance of genetic variants present in regulatory elements of SERPINB5 gene in gallbladder cancer. Gene. 2022;808:145989. doi: 10.1016/j.gene.2021.145989. PubMed DOI
Machowska M., Wachowicz K., Sopel M., Rzepecki R. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells. BMC Cancer. 2014;14:142. doi: 10.1186/1471-2407-14-142. PubMed DOI PMC
Longhi M.T., Magalhães M., Reina J., Freitas V.M., Cella N. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells. PLoS ONE. 2016;11:e0159856. doi: 10.1371/JOURNAL.PONE.0159856. PubMed DOI PMC
Kane R., Godson C., O’Brien C. Chordin-like 1, a bone morphogenetic protein-4 antagonist, is upregulated by hypoxia in human retinal pericytes and plays a role in regulating angiogenesis. Mol. Vis. 2008;14:1138. PubMed PMC
Wang Y.W., Wu C.H., Lin T.Y., Luo C.W. Expression profiling of ovarian BMP antagonists reveals the potential interaction between TWSG1 and the chordin subfamily in the ovary. Mol. Cell. Endocrinol. 2021;538:111457. doi: 10.1016/j.mce.2021.111457. PubMed DOI
Budna J., Rybska M., Ciesiółka S., Bryja A., Borys S., Kranc W., Wojtanowicz-Markiewicz K., Jeseta M., Sumelka E., Bukowska D., et al. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM—A microarray approach. Reprod. Biol. Endocrinol. 2017;15:43. doi: 10.1186/s12958-017-0261-6. PubMed DOI PMC
Kedem A., Ulanenko-Shenkar K., Yung Y., Youngster M., Avraham S., Yerushalmi G., Hourvitz A. The Involvement of Lumican in Human Ovulatory Processes. Reprod. Sci. 2022;29:366–373. doi: 10.1007/s43032-021-00650-y. PubMed DOI
Bonavina G., Taylor H.S. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front. Endocrinol. 2022;13:1020827. doi: 10.3389/fendo.2022.1020827. PubMed DOI PMC
Imrich S., Hachmeister M., Gires O. EpCAM and its potential role in tumor-initiating cells. Cell Adhes. Migr. 2012;6:30–38. doi: 10.4161/cam.18953. PubMed DOI PMC
Keller L., Werner S., Pantel K. Biology and clinical relevance of EpCAM. Cell Stress. 2019;3:165. doi: 10.15698/cst2019.06.188. PubMed DOI PMC
Gires O., Pan M., Schinke H., Canis M., Baeuerle P.A. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev. 2020;39:969–987. doi: 10.1007/s10555-020-09898-3. PubMed DOI PMC
González B., Denzel S., Mack B., Conrad M., Gires O. EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells. 2009;27:1782–1791. doi: 10.1002/stem.97. PubMed DOI
van der Gun B.T.F., Melchers L.J., Ruiters M.H.J., de Leij L.F.M.H., McLaughlin P.M.J., Rots M.G. EpCAM in carcinogenesis: The good, the bad or the ugly. Carcinogenesis. 2010;31:1913–1921. doi: 10.1093/carcin/bgq187. PubMed DOI
Brown T.C., Sankpal N.V., Gillanders W.E. Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules. 2021;11:956. doi: 10.3390/biom11070956. PubMed DOI PMC
Stelcer E., Komarowska H., Jopek K., Żok A., Iżycki D., Malińska A., Szczepaniak B., Komekbai Z., Karczewski M., Wierzbicki T., et al. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol. Lett. 2022;23:120. doi: 10.3892/ol.2022.13240. PubMed DOI PMC
Budna J., Chachuła A., Kaźmierczak D., Rybska M., Ciesiółka S., Bryja A., Kranc W., Borys S., Zok A., Bukowska D., et al. Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation. Zygote. 2017;25:331–340. doi: 10.1017/S096719941700020X. PubMed DOI
Gautier L., Cope L., Bolstad B.M., Irizarry R.A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–315. doi: 10.1093/bioinformatics/btg405. PubMed DOI
Szyszka M., Paschke L., Tyczewska M., Jopek K., Celichowski P., Milecka P., Sultanova G., Stelcer E., Malinska A., Malendowicz L.K., et al. Analysis of Transcriptome, Selected Intracellular Signaling Pathways, Proliferation and Apoptosis of LNCaP Cells Exposed to High Leptin Concentrations. Int. J. Mol. Sci. 2019;20:5412. doi: 10.3390/ijms20215412. PubMed DOI PMC
Gentleman R.C.V. Genefilter: Genefilter: Methods for Filtering Genes from High-Throughput Experiments. R Package Version 1.74.1. [(accessed on 5 April 2023)]. Available online: https://bioconductor.org/packages/release/bioc/html/genefilter.html.
Fresno C., Fernández E.A. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics. 2013;29:2810–2811. doi: 10.1093/bioinformatics/btt487. PubMed DOI
Benjamini Y., Cohen R. Weighted false discovery rate controlling procedures for clinical trials. Biostatistics. 2017;18:91–104. doi: 10.1093/biostatistics/kxw030. PubMed DOI PMC
Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Dennis G., Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:R60. doi: 10.1186/gb-2003-4-9-r60. PubMed DOI
Golkar-Narenji A., Antosik P., Nolin S., Rucinski M., Jopek K., Zok A., Sobolewski J., Jankowski M., Zdun M., Bukowska D., et al. Gene Ontology Groups and Signaling Pathways Regulating the Process of Avian Satellite Cell Differentiation. Genes. 2022;13:242. doi: 10.3390/genes13020242. PubMed DOI PMC