The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
- MeSH
- buněčné kultury metody MeSH
- epitelové buňky * metabolismus cytologie MeSH
- kultivované buňky MeSH
- prasata MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- vejcovody u zvířat metabolismus cytologie MeSH
- vejcovody metabolismus cytologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ovarian carcinoma features pronounced clinical, histopathological, and molecular heterogeneity. There is good reason to believe that parts of this heterogeneity can be explained by differences in the respective cell of origin, with a self-renewing fallopian tube secretory cell being likely responsible for initiation of an overwhelming majority of high-grade serous ovarian carcinomas (i.e., type II tumors according to the recent dualistic classification), whereas there are several mutually non-exclusive possibilities for the initiation of type I tumors, including ovarian surface epithelium stem cells, endometrial cells, or even cells of extra-Müllerian origin. Interestingly, both fallopian tube self-renewing secretory cells and ovarian surface epithelium stem cells seem to be characterized by an overlapping array of stemness signaling pathways, especially Wnt/β-catenin. Apart from this variability in the respective cell of origin, the particular clinical behavior of ovarian carcinoma strongly suggests an underlying stem cell component with a crucial impact. This becomes especially evident in high-grade serous ovarian carcinomas treated with classical chemotherapy, which entails a gradual evolution of chemoresistant disease without any apparent selection of clones carrying obvious chemoresistance-associated mutations. Several cell surface markers (e.g., CD24, CD44, CD117, CD133, and ROR1) as well as functional approaches (ALDEFLUOR™ and side population assays) have been used to identify and characterize putative ovarian carcinoma stem cells. We have recently shown that side population cells exhibit marked heterogeneity on their own, which can hamper their straightforward therapeutic targeting. An alternative strategy for stemness-depleting interventions is to target the stem cell niche, i.e., the specific microanatomical structure that secures stem cell maintenance and survival through provision of a set of stem cell-promoting and differentiation-antagonizing factors. Besides identifying direct or indirect therapeutic targets, profiling of side population cells and other ovarian carcinoma stem cell subpopulations can reveal relevant prognostic markers, as exemplified by our recent discovery of the Vav3.1 transcript variant, which filters out a fraction of prognostically unfavorable ovarian carcinoma cases.
INTRODUCTION: Many widely used international histological textbooks claim that the epithelium of the human uterine tube consists of two, three, and, eventually, four types of cells. Most discrepancies among these textbooks relate to debates regarding the presence or absence of basal cells, whether the peg/intercalary cells and secretory cells are the same or distinct cell populations, and if the epithelium contains a population of immunologically active cells (T- and B-lymphocytes, NK cells, macrophages and dendritic cells) or dispersed endocrine cells. METHODS: Uterine tubes were obtained from 22 women (average age: 46.73 y) undergoing gynecological surgery. The women were in fertile age, mostly in the middle of the menstrual cycle (ovulation phase). Tissue samples were processed for immunohistochemistry using primary antibodies against proliferation markers (Ki67 and PCNA), immune system cells (CD1a, CD3, CD4, CD8, CD20, CD45RO, CD56, CD68, granzyme B and S100) and disperse endocrine cells (chromogranin A and synaptophysin). RESULTS: Most of the mature tubal epithelial cells, ciliated cells, and secretory cells were mitotically active (PCNA+), a population of basal undifferentiated cells was not identified. The dividing cells had a narrow-shaped nucleus (Ki67 positive). These cells were morphologically identical to - by the terminology mentioned - intercalary cells, assuming they represented actually dividing cells (epitheliocytus tubarius mitoticus). The tubal "basal cells" displayed small, hyperchromatic nuclei and very pale cytoplasm (clear cytoplasmic halo). They were located in the epithelium adjacent to the basement membrane, were non-mitotically active and their immunophenotype corresponded to intraepithelial regulatory T-lymphocytes (CD3+, CD8+, CD45RO+, CD4-, CD20-, CD56- and granzyme B-). Intraepithelial B-lymphocytes were only rarely identified. Intraepithelial NK cells, dendritic cells, macrophages and dispersed endocrine cells were not identified. CONCLUSIONS: We recommend replacing the term "epitheliocytus tubarius basalis" in the Terminologia Histologica with the term "lymphocytus T intraepithelialis tubarius", which represents intraepithelial regulatory T-cells (CD8+, CD45RO+) of the uterine tube. Additionally, we propose that intercalary/peg cells are actively dividing cells, instead of effete or degenerating cells. Finally, the histological nomenclature should be corrected in a way that peg/intercalary cells are not considered synonymous terms for secretory cells.
- MeSH
- antigen Ki-67 metabolismus MeSH
- CD antigeny analýza MeSH
- dospělí MeSH
- epitelové buňky klasifikace imunologie MeSH
- imunohistochemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitóza MeSH
- proliferace buněk MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- vejcovody anatomie a histologie cytologie imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- anatomie srovnávací MeSH
- barvení a značení MeSH
- epitelové buňky MeSH
- estrus MeSH
- Haplorrhini MeSH
- kočky MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- ovce MeSH
- ovulace MeSH
- těhotenství MeSH
- vejcovody cytologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- MeSH
- buněčná diferenciace MeSH
- dospělí MeSH
- elektronová mikroskopie MeSH
- epitelové buňky MeSH
- histocytochemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikroskopie MeSH
- mladiství MeSH
- těhotenství MeSH
- vejcovody cytologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- těhotenství MeSH
- ženské pohlaví MeSH