Structural basis of binding the unique N-terminal domain of microtubule-associated protein 2c to proteins regulating kinases of signaling pathways
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39002671
PubMed Central
PMC11367651
DOI
10.1016/j.jbc.2024.107551
PII: S0021-9258(24)02052-0
Knihovny.cz E-resources
- Keywords
- A-kinase anchoring protein (AKAP), growth factor receptor-bound protein 2 (GRB2), microtubule associated protein (MAP) 2, nuclear magnetic resonance (NMR), protein kinase A (PKA),
- MeSH
- GRB2 Adaptor Protein * metabolism chemistry MeSH
- Humans MeSH
- Protein Domains MeSH
- Microtubule-Associated Proteins * metabolism chemistry genetics MeSH
- Proto-Oncogene Proteins c-fyn metabolism chemistry genetics MeSH
- Signal Transduction MeSH
- src Homology Domains MeSH
- Protein Binding * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- GRB2 Adaptor Protein * MeSH
- GRB2 protein, human MeSH Browser
- Microtubule-Associated Proteins * MeSH
- Proto-Oncogene Proteins c-fyn MeSH
Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.
Institute of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Institute of Molecular Medicine Tumor Biology Martin Luther University of Halle Wittenberg Germany
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
See more in PubMed
Dehmelt L., Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2004;6:204. PubMed PMC
Arendt T., Stieler J.T., Holzer M. Tau and tauopathies. Brain Res. Bull. 2016;126:238–292. PubMed
Jalava N.S., Lopez-Picon F.R., Kukko-Lukjanov T.K., Holopainen I.E. Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus. Int. J. Dev. Neurosci. 2007;25:121–131. PubMed
Viereck C., Tucker R., Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J. Neurosci. 1989;9:3547–3557. PubMed PMC
Sündermann F., Fernandez M.-P., Morgan R.O. An evolutionary roadmap to the microtubule-associated protein MAP Tau. BMC Genomics. 2016;17:264. PubMed PMC
Melková K., Zapletal V., Jansen S., Nomilner E., Zachrdla M., Hritz J., et al. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J. Biol. Chem. 2018;293:13297–13309. PubMed PMC
Xie C., Soeda Y., Shinzaki Y., In Y., Tomoo K., Ihara Y., et al. Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau. J. Neurochem. 2015;135:19–26. PubMed PMC
Goedert M., Falcon B., Clavaguera F., Tolnay M. Prion-like mechanisms in the Pathogenesis of tauopathies and Synucleinopathies. Curr. Neurol. Neurosci. Rep. 2014;14:495. PubMed
Bianchi M., Baulieu E.-E. 3β-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc. Natl. Acad. Sci. U. S. A. 2012;109:1713–1718. PubMed PMC
Rioux L., Ruscheinsky D., Arnold S.E. Microtubule-associated protein MAP2 expression in olfactory bulb in schizophrenia. Psychiatry Res. 2004;128:1–7. PubMed
Grubisha M.J., Sun X., MacDonald M.L., Garver M., Sun Z., Paris K.A., et al. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol. Psychiatry. 2021;26:5371–5388. PubMed PMC
Khuchua Z., Wozniak D.F., Bardgett M.E., Yue Z., McDonald M., Boero J., et al. Deletion of the n-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience. 2003;119:101–111. PubMed
Zhong H., Sia G.-M., Sato T.R., Gray N.W., Mao T., Khuchua Z., et al. Subcellular dynamics of type II PKA in neurons. Neuron. 2009;62:363–374. PubMed PMC
Taylor S.S., Buechler J.A., Yonemoto W. cAMP-Dependent protein kinase: Framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 1990;59:971–1005. PubMed
Colledge M., Scott J.D. AKAPs: from structure to function. Trends Cell Biol. 1999;9:216–221. PubMed
Zhang P., Smith-Nguyen E.V., Keshwani M.M., Deal M.S., Kornev A.P., Taylor S.S. Structure and Allostery of the PKA RIIβ tetrameric holoenzyme. Science. 2012;335:712–716. PubMed PMC
Huang L.J., Durick K., Weiner J.A., Chun J., Taylor S.S. D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc. Natl. Acad. Sci. U. S. A. 1997;94:11184–11189. PubMed PMC
Huang L.J., Durick K., Weiner J.A., Chun J., Taylor S.S. Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J. Biol. Chem. 1997;272:8057–8064. PubMed
Means C.K., Lygren B., Langeberg L.K., Jain A., Dixon R.E., Vega A.L., et al. An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2011;108:E1227–E1235. PubMed PMC
Kovanich D., van der Heyden M.A.G., Aye T.T., van Veen T.A.B., Heck A.J.R., Scholten A. Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase. ChemBioChem. 2010;11:963–971. PubMed
Burgers P.P., Ma Y., Margarucci L., Mackey M., van der Heyden M.A.G., Ellisman M., et al. A small novel A-kinase anchoring protein (AKAP) that Localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J. Biol. Chem. 2012;287:43789–43797. PubMed PMC
Sarma G.N., Kinderman F.S., Kim C., von Daake S., Chen L., Wang B.-C., et al. Structure of D-AKAP2:PKA RI complex: Insights into AKAP specificity and Selectivity. Structure. 2010;18:155–166. PubMed PMC
Götz F., Roske Y., Schulz M.S., Autenrieth K., Bertinetti D., Faelber K., et al. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem. J. 2016;473:1881–1894. PubMed PMC
Newlon M.G. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J. 2001;20:1651–1662. PubMed PMC
Kinderman F.S., Kim C., von Daake S., Ma Y., Pham B.Q., Spraggon G., et al. A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol. Cell. 2006;24:397–408. PubMed PMC
Gold M.G., Lygren B., Dokurno P., Hoshi N., McConnachie G., Taskén K., et al. Molecular basis of AKAP specificity for PKA regulatory subunits. Mol. Cell. 2006;24:383–395. PubMed
Theurkauf W.E., Vallee R.B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J. Biol. Chem. 1982;257:3284–3290. PubMed
Carr D.W., DeManno D.A., Atwood A., Hunzicker-Dunn M., Scott J.D. Follicle-stimulating hormone regulation of A-kinase anchoring proteins in granulosa cells. J. Biol. Chem. 1993;268:20729–20732. PubMed
Salvador L.M., Flynn M.P., Avila J., Reierstad S., Maizels E.T., Alam H., et al. Neuronal microtubule-associated protein 2D is a dual A-kinase anchoring protein expressed in rat Ovarian granulosa cells. J. Biol. Chem. 2004;279:27621–27632. PubMed PMC
Rubino H.M., Dammerman M., Shafit-Zagardo B., Erlichman J. Localization and characterization of the binding site for the regulatory subunit of type II cAMP-dependent protein kinase on MAP2. Neuron. 1989;3:631–638. PubMed
Harada A., Teng J., Takei Y., Oguchi K., Hirokawa N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol. 2002;158:541–549. PubMed PMC
Corcoran K.A., Leaderbrand K., Jovasevic V., Guedea A.L., Kassam F., Radulovic J. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl. Psychiatry. 2015;5:e657. PubMed PMC
Leterrier J.F., Kurachi M., Tashiro T., Janmey P.A. MAP2-mediated in vitro interactions of brain microtubules and their modulation by cAMP. Eur. Biophys. J. 2009;38:381–393. PubMed PMC
Jansen S., Melková K., Trošanová Z., Hanáková K., Zachrdla M., Nováček J., et al. Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau. J. Biol. Chem. 2017;292:6715–6727. PubMed PMC
Lowenstein E.J., Daly R.J., Batzer A.G., Li W., Margolis B., Lammers R., et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992;70:431–442. PubMed
Maignan S., Guilloteau J.-P., Fromage N., Arnoux B., Becquart J., Ducruix A. Crystal structure of the mammalian Grb2 adaptor. Science. 1995;268:291–293. PubMed
Zamora-Leon S.P., Lee G., Davies P., Shafit-Zagardo B. Binding of fyn to MAP-2c through an SH3 binding domain. J. Biol. Chem. 2001;276:39950–39958. PubMed
Lim R.W.L., Halpain S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. J. Biol. Chem. 2000;275:20578–20587. PubMed
Zamora-Leon S.P., Bresnick A., Backer J.M., Shafit-Zagardo B. Fyn phosphorylates human MAP-2c on tyrosine 67. J. Biol. Chem. 2005;280:1962–1970. PubMed
Sanches K., Caruso I.P., Almeida F.C.L., Melo F.A. The dynamics of free and phosphopeptide-bound Grb2-SH2 reveals two dynamically independent subdomains and an encounter complex with fuzzy interactions. Sci. Rep. 2020;10 PubMed PMC
Plucarová J., Jansen S., Narasimhan S., Laníková A., Lewitzky M., Feller S.M., et al. Specific phosphorylation of microtubule-associated protein 2c by extracellular signal–regulated kinase reduces interactions at its Pro-rich regions. J. Biol. Chem. 2022;298 PubMed PMC
Li W., Nishimura R., Kashishian A., Batzer A.G., Kim W.J.H., Cooper J.A., et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol. Cell. Biol. 1994;14:509–517. PubMed PMC
Lin C.-C., Wieteska L., Suen K.M., Kalverda A.P., Ahmed Z., Ladbury J.E. Grb2 binding induces phosphorylation-independent activation of Shp2. Commun. Biol. 2021;4:437. PubMed PMC
Teng J., Takei Y., Harada A., Nakata T., Chen J., Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 2001;155:65–76. PubMed PMC
Grant S.G.N., O’Dell T.J., Karl K.A., Stein P.L., Soriano P., Kandel E.R. Impaired long-Term Potentiation, Spatial Learning, and hippocampal development in fyn mutant mice. Science. 1992;258:1903–1910. PubMed
Huang Y., Li G., An L., Fan Y., Cheng X., Li X., et al. Fyn regulates multipolar–bipolar transition and neurite morphogenesis of migrating neurons in the developing neocortex. Neuroscience. 2017;352:39–51. PubMed
Conti L., De Fraja C., Gulisano M., Migliaccio E., Govoni S., Cattaneo E. Expression and activation of SH2/PTB-containing ShcA adaptor protein reflects the pattern of neurogenesis in the mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 1997;94:8185–8190. PubMed PMC
Zhou L., Talebian A., Meakin S.O. The signaling Adapter, FRS2, Facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J. Mol. Neurosci. 2015;55:663–677. PubMed
Williamson R., Scales T., Clark B.R., Gibb G., Reynolds C.H., Kellie S., et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and Focal Adhesion kinase in response to Amyloid-β peptide Exposure: Involvement of Src family protein kinases. J. Neurosci. 2002;22:10–20. PubMed PMC
Yi R., Feng J., Yang S., Huang X., Liao Y., Hu Z., et al. miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J. Mol. Histol. 2018;49:209–218. PubMed
Hausken Z.E., Dell’Acqua M.L., Coghlan V.M., Scott J.D. Mutational analysis of the A-kinase anchoring protein (AKAP)-binding site on RII. J. Biol. Chem. 1996;271:29016–29022. PubMed
Alto N.M., Soderling S.H., Hoshi N., Langeberg L.K., Fayos R., Jennings P.A., et al. Bioinformatic design of A-kinase anchoring protein- in silico : a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc. Natl. Acad. Sci. U. S. A. 2003;100:4445–4450. PubMed PMC
Kay L.E., Ikura M., Tschudin R., Bax A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 1990;89:496–514. PubMed
Bodenhausen G., Ruben D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 1980;69:185–189.
Sklenáŕ V., Piotto M., Leppik R., Saudek V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to Retain full Sensitivity. J. Magn. Reson. Ser. A. 1993;102:241–245.
Wittekind M., Mueller L. HNCACB, a high-Sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the Alpha- and beta-carbon resonances in proteins. J. Magn. Reson. Ser. B. 1993;101:201–205.
Grzesiekt S., Bax A. Correlating backbone amide and side chain resonances in larger proteins by multiple Relayed triple resonance NMR. J. Am. Chem. Soc. 1992;114:6291–6293.
Bax A., Ikura M. An efficient 3D NMR technique for correlating the proton and15N backbone amide resonances with the α-carbon of the preceding residue in uniformly15N/13C enriched proteins. J. Biomol. NMR. 1991;1:99–104. PubMed
Zuiderweg E.R.P., Fesik S.W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989;28:2387–2391. PubMed
Marion D., Driscoll P.C., Kay L.E., Wingfield P.T., Bax A., Gronenborn A.M., et al. Overcoming the overlap problem in the assignment of proton NMR spectra of larger proteins by use of three-dimensional heteronuclear proton-nitrogen-15 Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1.beta. Biochemistry. 1989;28:6150–6156. PubMed
Marion D., Kay L.E., Sparks S.W., Torchia D.A., Bax A. Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins. J. Am. Chem. Soc. 1989;111:1515–1517.
Kay L.E., Xu G.Y., Singer A.U., Muhandiram D.R., Formankay J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J. Magn. Reson. Ser. B. 1993;101:333–337.
Bax A., Clore G.M., Gronenborn A.M. 1H 1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J. Magn. Reson. 1990;88:425–431.
Hansen M.R., Mueller L., Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 1998;5:1065–1074. PubMed
Clore G.M., Starich M.R., Gronenborn A.M. Measurement of residual dipolar couplings of macromolecules aligned in the Nematic phase of a Colloidal Suspension of Rod-Shaped Viruses. J. Am. Chem. Soc. 1998;120:10571–10572.
Ottiger M., Delaglio F., Bax A. Measurement ofJand dipolar couplings from Simplified two-dimensional NMR spectra. J. Magn. Reson. 1998;131:373–378. PubMed
Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv. 2021 doi: 10.1101/2021.10.04.463034. [preprint] DOI
Güntert P., Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J. Biomol. NMR. 2015;62:453–471. PubMed
Shen Y., Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR. 2013;56:227–241. PubMed PMC
Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., et al. Crystallography & NMR system: a new software suite for Macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 1998;54:905–921. PubMed
Nederveen A.J., Doreleijers J.F., Vranken W., Miller Z., Spronk C.A.E.M., Nabuurs S.B., et al. RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins. 2005;59:662–672. PubMed
Corpora T., Roudaia L., Oo Z.M., Chen W., Manuylova E., Cai X., et al. Structure of the AML1-ETO NHR3–PKA(RIIα) complex and its contribution to AML1-ETO activity. J. Mol. Biol. 2010;402:560–577. PubMed PMC
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Penk A., Danielsson A., Gaardløs M., Montag C., Schöler A., Huster D., et al. Detecting protein-ligand interactions with nitroxide based paramagnetic cosolutes. Chemistry. 2024;30 PubMed
Ogura K., Tsuchiya S., Terasawa H., Yuzawa S., Hatanaka H., Mandiyan V., et al. Solution structure of the SH2 domain of Grb2 complexed with the Shc-derived phosphotyrosine-containing peptide. J. Mol. Biol. 1999;289:439–445. PubMed
Kessels H.W.H.G., Ward A.C., Schumacher T.N.M. Specificity and affinity motifs for Grb2 SH2-ligand interactions. Proc. Natl. Acad. Sci. U. S. A. 2002;99:8524–8529. PubMed PMC
Smith F.D., Reichow S.L., Esseltine J.L., Shi D., Langeberg L.K., Scott J.D., et al. Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation. Elife. 2013;2 PubMed PMC
Batzer A.G., Rotin D., Urena J.M., Skolnik E.Y., Schlessinger J. Hierarchy of binding sites for Grb2 and Shc on the Epidermal growth factor receptor. Mol. Cell. Biol. 1994;14:5192–5201. PubMed PMC
Ogawa S., Watanabe M., Sakurai Y., Inutake Y., Watanabe S., Tai X., et al. CD28 signaling in primary CD4+ T cells: identification of both tyrosine phosphorylation-dependent and phosphorylation-independent pathways. Int. Immunol. 2013;25:671–681. PubMed
Benfield A.P., Whiddon B.B., Clements J.H., Martin S.F. Structural and energetic aspects of Grb2-SH2 domain-swapping. Arch. Biochem. Biophys. 2007;462:47–53. PubMed PMC
Hosoe Y., Numoto N., Inaba S., Ogawa S., Morii H., Abe R., et al. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophysics. 2019;16:80–88. PubMed PMC
Ochi S., Iiyama M., Oda M. Interdomain interactions in Grb2 revealed by the conformational stability and CD28 binding analysis. Biophys. Chem. 2022;284 PubMed
Zamora-Leon S.P., Shafit-Zagardo B. Disruption of the actin network enhances MAP-2c and Fyn-induced process outgrowth. Cell Motil. Cytoskeleton. 2005;62:110–123. PubMed
Houtman J.C.D., Yamaguchi H., Barda-Saad M., Braiman A., Bowden B., Appella E., et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 2006;13:798–805. PubMed
Yuzawa S., Yokochi M., Hatanaka H., Ogura K., Kataoka M., Miura K., et al. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J. Mol. Biol. 2001;306:527–537. PubMed
Welch P. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell. 1993;75:779–790. PubMed
Albanese S.K., Parton D.L., Işık M., Rodríguez-Laureano L., Hanson S.M., Behr J.M., et al. An open Library of human kinase domain constructs for automated bacterial expression. Biochemistry. 2018;57:4675–4689. PubMed PMC
Nováček J., Janda L., Dopitová R., Žídek L., Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR. 2013;56:291–301. PubMed
Tong K.I., Yamamoto M., Tanaka T. A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J. Biomol. NMR. 2008;42:59–67. PubMed
Wider G., Dreier L. Measuring protein concentrations by NMR spectroscopy. J. Am. Chem. Soc. 2006;128:2571–2576. PubMed
Wang Y.-S., Frederick A.F., Senior M.M., Lyons B.A., Black S., Kirschmeier P., et al. Chemical shift assignments and secondary structure of the Grb2 SH2 domain by heteronuclear NMR spectroscopy. J. Biomol. NMR. 1996;7:89–98. PubMed
Thornton K.H., Mueller W.T., McConnell P., Zhu G., Saltiel A.R., Thanabal V. Nuclear magnetic resonance solution structure of the growth factor receptor-bound protein 2 Src homology 2 domain. Biochemistry. 1996;35:11852–11864. PubMed
Sanches K., Caruso Í.P., Almeida F.C.L., Melo F.A. NMR assignment of free 1H, 15N and 13C-Grb2-SH2 domain. Biomol. NMR Assign. 2019;13:295–298. PubMed
Williamson M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013;73:1–16. PubMed
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Bauer P., Hess B., Lindahl E. GROMACS 2022.3 Source Code. Royal Institute of Technology and Uppsala University; Stockholm, Sweden: 2022. 10.5281/ZENODO.7037338.
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. PubMed PMC
Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010;31:671–690. PubMed PMC
Soteras Gutiérrez I., Lin F.-Y., Vanommeslaeghe K., Lemkul J.A., Armacost K.A., Brooks C.L., et al. Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand–protein interactions. Bioorg. Med. Chem. 2016;24:4812–4825. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472.
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126 PubMed
Parrinello M., Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Bauer P., Hess B., Lindahl E. GROMACS 2022.3 Manual. Royal Institute of Technology and Uppsala University; Stockholm, Sweden: 2022. 10.5281/ZENODO.7037337.