The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39007196
DOI
10.1039/d4cp02146k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The unoccupied π* orbitals of the nucleobases are considered to play important roles in low-energy electron attachment to DNA, inducing damage. While the lowest anionic valence state is vertically unbound in all neutral nucleobases, it remains unclear even for the simplest nucleobase, uracil (U), whether its valence anion (U-) is adiabatically bound, which has important implications on the efficacy of damage processes. Using anion photoelectron spectroscopy, we demonstrate that the valence electron affinity (EAV) of U can be accurately measured within weakly solvating clusters, U-(Ar)n and U-(N2)n. Through extrapolation to the isolated U limit, we show that EAV = -2 ± 18 meV. We discuss these findings in the context of electron attachment to U and its reorganization energy, and more generally establish guidance for the determination of molecular electron affinities from the photoelectron spectroscopy of anion clusters.
Citace poskytuje Crossref.org
The Influence of Water Molecules on the π* Shape Resonances of the Thymine Anion
The role of water molecules in the dissociation of an electron-molecule contact pair