The Influence of Water Molecules on the π* Shape Resonances of the Thymine Anion
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40351236
PubMed Central
PMC12235612
DOI
10.1021/acs.jpca.5c01948
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Low-energy electrons have been shown to resonantly attach to DNA, inducing strand breakages and other damaging lesions. While computational studies have suggested that the nucleobase moieties can serve as the initial attachment site, there remains ambiguity over the exact character of the temporary anion resonances that form due to the unestablished role of the surrounding environment. Here, we investigate the influence of an aqueous environment on the low-lying anion shape resonances of the π* character of the thymine anion by applying frequency-resolved photoelectron spectroscopy to thymine-water cluster anions, T-(H2O)n, with an increasing degree of hydration, n. Our results indicate that spontaneous solvent rearrangement will stabilize the π2* and π3* states into bound electronic states, and we observe evidence for internal conversion to the anion ground state, further aiding long-term electron capture via these resonances.
Zobrazit více v PubMed
Pimblott S. M., LaVerne J. A.. Production of Low-Energy Electrons by Ionizing Radiation. Radiat. Phys. Chem. 2007;76(8):1244–1247. doi: 10.1016/j.radphyschem.2007.02.012. DOI
Boudaïffa B., Cloutier P., Hunting D., Huels M. A., Sanche L.. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science. 2000;287(5458):1658–1660. doi: 10.1126/science.287.5458.1658. PubMed DOI
Martin F., Burrow P. D., Cai Z., Cloutier P., Hunting D., Sanche L.. DNA Strand Breaks Induced by 0--4 eV Electrons: The Role of Shape Resonances. Phys. Rev. Lett. 2004;93(6):068101. doi: 10.1103/PhysRevLett.93.068101. PubMed DOI
Alizadeh E., Orlando T. M., Sanche L.. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66(1):379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI
Shao Y., Dong Y., Hunting D., Zheng Y., Sanche L.. Unified Mechanism for the Generation of Isolated and Clustered DNA Damages by a Single Low Energy (5–10 eV) Electron. J. Phys. Chem. C. 2017;121(4):2466–2472. doi: 10.1021/acs.jpcc.6b12110. DOI
Dong Y., Gao Y., Liu W., Gao T., Zheng Y., Sanche L.. Clustered DNA Damage Induced by 2–20 eV Electrons and Transient Anions: General Mechanism and Correlation to Cell Death. J. Phys. Chem. Lett. 2019;10(11):2985–2990. doi: 10.1021/acs.jpclett.9b01063. PubMed DOI
Gao Y., Zheng Y., Sanche L.. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int. J. Mol. Sci. 2021;22(15):7879. doi: 10.3390/ijms22157879. PubMed DOI PMC
Barrios R., Skurski P., Simons J.. Mechanism for Damage to DNA by Low-Energy Electrons. J. Phys. Chem. B. 2002;106(33):7991–7994. doi: 10.1021/jp013861i. DOI
Berdys J., Anusiewicz I., Skurski P., Simons J.. Damage to Model DNA Fragments from Very Low-Energy (<1 eV) Electrons. J. Am. Chem. Soc. 2004;126(20):6441–6447. doi: 10.1021/ja049876m. PubMed DOI
Bao X., Wang J., Gu J., Leszczynski J.. DNA Strand Breaks Induced by Near-Zero-Electronvolt Electron Attachment to Pyrimidine Nucleotides. Proc. Natl. Acad. Sci. U. S. A. 2006;103(15):5658–5663. doi: 10.1073/pnas.0510406103. PubMed DOI PMC
Gu J., Wang J., Leszczynski J.. Electron Attachment-Induced DNA Single Strand Breaks: C3‘ – O3‘ σ-Bond Breaking of Pyrimidine Nucleotides Predominates. J. Am. Chem. Soc. 2006;128(29):9322–9323. doi: 10.1021/ja063309c. PubMed DOI
Simons J.. How Do Low-Energy (0.1–2 eV) Electrons Cause DNA-Strand Breaks? Acc. Chem. Res. 2006;39(10):772–779. doi: 10.1021/ar0680769. PubMed DOI
Kumar A., Sevilla M. D.. Low-Energy Electron Attachment to 5‘-Thymidine Monophosphate: Modeling Single Strand Breaks Through Dissociative Electron Attachment. J. Phys. Chem. B. 2007;111(19):5464–5474. doi: 10.1021/jp070800x. PubMed DOI
Kumar A., Sevilla M. D.. The Role of Πσ* Excited States in Electron-Induced DNA Strand Break Formation: A Time-Dependent Density Functional Theory Study. J. Am. Chem. Soc. 2008;130(7):2130–2131. doi: 10.1021/ja077331x. PubMed DOI
Baccarelli I., Bald I., Gianturco F. A., Illenberger E., Kopyra J.. Electron-Induced Damage of DNA and Its Components: Experiments and Theoretical Models. Phys. Rep. 2011;508(1):1–44. doi: 10.1016/j.physrep.2011.06.004. DOI
Simons J.. Molecular Anions Perspective. J. Phys. Chem. A. 2023;127(18):3940–3957. doi: 10.1021/acs.jpca.3c01564. PubMed DOI
Ptasinska S., Denifl S., Scheier P., Illenberger E., Märk T. D.. Bond- and Site-Selective Loss of H Atoms from Nucleobases by Very-Low-Energy Electrons (<3 eV) Angew. Chem., Int. Ed. 2005;44(42):6941–6943. doi: 10.1002/anie.200502040. PubMed DOI
Gu J., Leszczynski J., Schaefer H. F. I.. Interactions of Electrons with Bare and Hydrated Biomolecules: From Nucleic Acid Bases to DNA Segments. Chem. Rev. 2012;112(11):5603–5640. doi: 10.1021/cr3000219. PubMed DOI
Kohanoff J., McAllister M., Tribello G. A., Gu B.. Interactions between Low Energy Electrons and DNA: A Perspective from First-Principles Simulations. J. Phys.: Condens. Matter. 2017;29(38):383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI
Bald, I. ; Denifl, S. . The Role of Low-Energy Electrons in DNA Radiation Damage. In Low-Energy Electrons; CRC Press: United Kingdom, 2019; pp 285–340. 10.1201/9780429058820-6. DOI
Cornetta L. M., Coutinho K., Varella M. T. do N.. Solvent Effects on the Π* Shape Resonances of Uracil. J. Chem. Phys. 2020;152(8):084301. doi: 10.1063/1.5139459. PubMed DOI
Tripathi D., Pyla M., Dutta A. K., Matsika S.. Impact of Solvation on the Electronic Resonances in Uracil. Phys. Chem. Chem. Phys. 2025;27:3588. doi: 10.1039/D4CP04333B. PubMed DOI
Markovich G., Pollack S., Giniger R., Cheshnovsky O.. Photoelectron Spectroscopy of Cl–, Br–, and I– Solvated in Water Clusters. J. Chem. Phys. 1994;101(11):9344–9353. doi: 10.1063/1.467965. DOI
Mensa-Bonsu G., Lietard A., Verlet J. R. R.. Enhancement of Electron Accepting Ability of Para -Benzoquinone by a Single Water Molecule. Phys. Chem. Chem. Phys. 2019;21(39):21689–21692. doi: 10.1039/C9CP04559G. PubMed DOI
Lietard A., Mensa-Bonsu G., Verlet J. R. R.. The Effect of Solvation on Electron Capture Revealed Using Anion Two-Dimensional Photoelectron Spectroscopy. Nat. Chem. 2021;13(8):737–742. doi: 10.1038/s41557-021-00687-1. PubMed DOI
Lietard A., Verlet J. R. R.. Effect of Microhydration on the Temporary Anion States of Pyrene. J. Phys. Chem. Lett. 2022;13(16):3529–3533. doi: 10.1021/acs.jpclett.2c00523. PubMed DOI PMC
Cooper G. A., Clarke C. J., Verlet J. R. R.. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023;145(2):1319–1326. doi: 10.1021/jacs.2c11440. PubMed DOI PMC
Ma J., Wang F., Denisov S. A., Adhikary A., Mostafavi M.. Reactivity of Prehydrated Electrons toward Nucleobases and Nucleotides in Aqueous Solution. Sci. Adv. 2017;3(12):e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC
Ma J., Kumar A., Muroya Y., Yamashita S., Sakurai T., Denisov S. A., Sevilla M. D., Adhikary A., Seki S., Mostafavi M.. Observation of Dissociative Quasi-Free Electron Attachment to Nucleoside via Excited Anion Radical in Solution. Nat. Commun. 2019;10(1):102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC
Castleman A. W., Keesee R. G.. Gas-Phase Clusters: Spanning the States of Matter. Science. 1988;241(4861):36–42. doi: 10.1126/science.241.4861.36. PubMed DOI
Jortner J.. Cluster Size Effects. Z. Für Phys. At. Mol. Clust. 1992;24(3):247–275. doi: 10.1007/BF01425749. DOI
Castleman A. W., Bowen K. H.. Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter. J. Phys. Chem. 1996;100(31):12911–12944. doi: 10.1021/jp961030k. DOI
Arnold S. T., Hendricks J. H., Bowen K. H.. Photoelectron Spectroscopy of the Solvated Anion Clusters O–(Ar)N = 1–26,34: Energetics and Structure. J. Chem. Phys. 1995;102(1):39–47. doi: 10.1063/1.469415. DOI
Hendricks J. H., de Clercq H. L., Freidhoff C. B., Arnold S. T., Eaton J. G., Fancher C., Lyapustina S. A., Snodgrass J. T., Bowen K. H.. Anion Solvation at the Microscopic Level: Photoelectron Spectroscopy of the Solvated Anion Clusters, NO–(Y)n, Where Y = Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)2. J. Chem. Phys. 2002;116(18):7926–7938. doi: 10.1063/1.1457444. DOI
Ayotte P., Bailey C. G., Kim J., Johnson M. A.. Vibrational Predissociation Spectroscopy of the (H2O)6–·Arn, N⩾6. Clusters. J. Chem. Phys. 1998;108(2):444–449. doi: 10.1063/1.475406. DOI
Robertson W. H., Johnson M. A.. Molecular Aspects of Halide Ion Hydration: The Cluster Approach. Annu. Rev. Phys. Chem. 2003;54(1):173–213. doi: 10.1146/annurev.physchem.54.011002.103801. PubMed DOI
Hammer N. I., Shin J.-W., Headrick J. M., Diken E. G., Roscioli J. R., Weddle G. H., Johnson M. A.. How Do Small Water Clusters Bind an Excess Electron? Science. 2004;306(5696):675–679. doi: 10.1126/science.1102792. PubMed DOI
Hammer N. I., Roscioli J. R., Johnson M. A.. Identification of Two Distinct Electron Binding Motifs in the Anionic Water Clusters: A Vibrational Spectroscopic Study of the (H2O)6- Isomers. J. Phys. Chem. A. 2005;109(35):7896–7901. doi: 10.1021/jp052144b. PubMed DOI
Hammer N. I., Roscioli J. R., Bopp J. C., Headrick J. M., Johnson M. A.. Vibrational Predissociation Spectroscopy of the (H2O)6–21– Clusters in the OH Stretching Region: Evolution of the Excess Electron-Binding Signature into the Intermediate Cluster Size Regime. J. Chem. Phys. 2005;123(24):244311. doi: 10.1063/1.2134701. PubMed DOI
Roscioli J. R., Hammer N. I., Johnson M. A.. Infrared Spectroscopy of Water Cluster Anions, (H2O)N = 3–24- in the HOH Bending Region: Persistence of the Double H-Bond Acceptor (AA) Water Molecule in the Excess Electron Binding Site of the Class I Isomers. J. Phys. Chem. A. 2006;110(24):7517–7520. doi: 10.1021/jp062029g. PubMed DOI
Roscioli J. R., Diken E. G., Johnson M. A., Horvath S., McCoy A. B.. Prying Apart a Water Molecule with Anionic H-Bonding: A Comparative Spectroscopic Study of the X-·H2O (X = OH, O, F, Cl, and Br) Binary Complexes in the 600–3800 Cm-1 Region. J. Phys. Chem. A. 2006;110(15):4943–4952. doi: 10.1021/jp056022v. PubMed DOI
Asmis K. R., Santambrogio G., Zhou J., Garand E., Headrick J., Goebbert D., Johnson M. A., Neumark D. M.. Vibrational Spectroscopy of Hydrated Electron Clusters(H2O)15–50– via Infrared Multiple Photon Dissociation. J. Chem. Phys. 2007;126(19):191105. doi: 10.1063/1.2741508. PubMed DOI
Yang N., Duong C. H., Kelleher P. J., Johnson M. A.. Unmasking Rare, Large-Amplitude Motions in D2-Tagged I–·(H2O)2 Isotopomers with Two-Color, Infrared–Infrared Vibrational Predissociation Spectroscopy. J. Phys. Chem. Lett. 2018;9(13):3744–3750. doi: 10.1021/acs.jpclett.8b01485. PubMed DOI
Harville P. A., Edington S. C., Moss O. C., Huang M., McCoy A. B., Johnson M. A.. High-Resolution Vibrational Predissociation Spectroscopy of I– · H2O by Single-Mode CW Infrared Excitation in a 3D Cryogenic Ion Trap. Mol. Phys. 2024;122(1–2):e2174784. doi: 10.1080/00268976.2023.2174784. DOI
Serxner D., Dessent C. E. H., Johnson M. A.. Precursor of the Iaq– Charge-transfer-to-solvent (CTTS) Band in I–·(H2O)n Clusters. J. Chem. Phys. 1996;105(16):7231–7234. doi: 10.1063/1.472529. DOI
Ayotte P., Johnson M. A.. Electronic Absorption Spectra of Size-Selected Hydrated Electron Clusters: (H2O)N–, N = 6–50. J. Chem. Phys. 1997;106(2):811–814. doi: 10.1063/1.473167. DOI
Herburger A., Barwa E., Ončák M., Heller J., van der Linde C., Neumark D. M., Beyer M. K.. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H2O)n–, n ≤ 200, by Electronic Absorption Spectroscopy. J. Am. Chem. Soc. 2019;141(45):18000–18003. doi: 10.1021/jacs.9b10347. PubMed DOI PMC
Coe J. V., Lee G. H., Eaton J. G., Arnold S. T., Sarkas H. W., Bowen K. H., Ludewigt C., Haberland H., Worsnop D. R.. Photoelectron Spectroscopy of Hydrated Electron Cluster Anions, (H2O)–n = 2–69. J. Chem. Phys. 1990;92(6):3980–3982. doi: 10.1063/1.457805. DOI
Markovich G., Giniger R., Levin M., Cheshnovsky O.. Photoelectron Spectroscopy of Iodine Anion Solvated in Water Clusters. J. Chem. Phys. 1991;95(12):9416–9419. doi: 10.1063/1.461172. DOI
Kim J., Becker I., Cheshnovsky O., Johnson M. A.. Photoelectron Spectroscopy of the `missing’ Hydrated Electron Clusters (H2O)–n, N = 3, 5, 8 and 9: Isomers and Continuity with the Dominant Clusters N = 6, 7 and ⩾11. Chem. Phys. Lett. 1998;297(1):90–96. doi: 10.1016/S0009-2614(98)01109-9. DOI
Verlet J. R. R., Bragg A. E., Kammrath A., Cheshnovsky O., Neumark D. M.. Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons. Science. 2005;307(5706):93–96. doi: 10.1126/science.1106719. PubMed DOI
Coe J. V., Arnold S. T., Eaton J. G., Lee G. H., Bowen K. H.. Photoelectron Spectra of Hydrated Electron Clusters: Fitting Line Shapes and Grouping Isomers. J. Chem. Phys. 2006;125(1):014315. doi: 10.1063/1.2212415. PubMed DOI
Ma L., Majer K., Chirot F., von Issendorff B.. Low Temperature Photoelectron Spectra of Water Cluster Anions. J. Chem. Phys. 2009;131(14):144303. doi: 10.1063/1.3245859. PubMed DOI
Lietard A., Verlet J. R. R.. Selectivity in Electron Attachment to Water Clusters. J. Phys. Chem. Lett. 2019;10(6):1180–1184. doi: 10.1021/acs.jpclett.9b00275. PubMed DOI
Coe J. V.. Connecting Cluster Anion Properties to Bulk: Ion Solvation Free Energy Trends with Cluster Size and the Surface vs Internal Nature of Iodide in Water Clusters. J. Phys. Chem. A. 1997;101(11):2055–2063. doi: 10.1021/jp962490g. DOI
Cooper G. A., Clarke C. J., Verlet J. R. R.. Electron Impact Resonances of Uracil in an Aqueous Environment from Anion Photoelectron Imaging. J. Phys. B At. Mol. Opt. Phys. 2023;56(18):185102. doi: 10.1088/1361-6455/acf353. DOI
Schiedt J., Weinkauf R., Neumark D. M., Schlag E. W.. Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters. Chem. Phys. 1998;239(1):511–524. doi: 10.1016/S0301-0104(98)00361-9. DOI
Eustis S., Wang D., Lyapustina S., Bowen K. H.. Photoelectron Spectroscopy of Hydrated Adenine Anions. J. Chem. Phys. 2007;127(22):224309. doi: 10.1063/1.2806033. PubMed DOI
Aflatooni K., Gallup G. A., Burrow P. D.. Electron Attachment Energies of the DNA Bases. J. Phys. Chem. A. 1998;102(31):6205–6207. doi: 10.1021/jp980865n. DOI
Rogers J. P., Anstöter C. S., Bull J. N., Curchod B. F. E., Verlet J. R. R.. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C6F6)n– (n = 1–5) and I–(C6F6) J. Phys. Chem. A. 2019;123(8):1602–1612. doi: 10.1021/acs.jpca.8b11627. PubMed DOI
Even U.. The Even-Lavie Valve as a Source for High Intensity Supersonic Beam. EPJ. Technol. Instrum. 2015;2(1):17. doi: 10.1140/epjti/s40485-015-0027-5. DOI
Wiley W. C., McLaren I. H.. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955;26(12):1150–1157. doi: 10.1063/1.1715212. DOI
Eppink A. T. J. B., Parker D. H.. Velocity Map Imaging of Ions and Electrons Using Electrostatic Lenses: Application in Photoelectron and Photofragment Ion Imaging of Molecular Oxygen. Rev. Sci. Instrum. 1997;68(9):3477–3484. doi: 10.1063/1.1148310. DOI
Roberts G. M., Nixon J. L., Lecointre J., Wrede E., Verlet J. R. R.. Toward Real-Time Charged-Particle Image Reconstruction Using Polar Onion-Peeling. Rev. Sci. Instrum. 2009;80(5):053104. doi: 10.1063/1.3126527. PubMed DOI
West C. W., Bull J. N., Antonkov E., Verlet J. R. R.. Anion Resonances of Para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging. J. Phys. Chem. A. 2014;118(48):11346–11354. doi: 10.1021/jp509102p. PubMed DOI
Anstöter C. S., Bull J. N., Verlet J. R. R.. Ultrafast Dynamics of Temporary Anions Probed through the Prism of Photodetachment. Int. Rev. Phys. Chem. 2016;35(4):509–538. doi: 10.1080/0144235X.2016.1203522. DOI
Kim S., Wheeler S. E., Schaefer H. F. III.. Microsolvation Effects on the Electron Capturing Ability of Thymine: Thymine-Water Clusters. J. Chem. Phys. 2006;124(20):204310. doi: 10.1063/1.2197828. PubMed DOI
Campbell E. E. B., Levine R. D.. Delayed Ionization and Fragmentation En Route to Thermionic Emission: Statistics and Dynamics. Annu. Rev. Phys. Chem. 2000;51(1):65–98. doi: 10.1146/annurev.physchem.51.1.65. PubMed DOI
Andersen J. U., Bonderup E., Hansen K.. Thermionic Emission from Clusters. J. Phys. B: At., Mol. Opt. Phys. 2002;35(5):R1. doi: 10.1088/0953-4075/35/5/201. DOI
Adams C. L., Hansen K., Weber J. M.. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J. Phys. Chem. A. 2019;123(40):8562–8570. doi: 10.1021/acs.jpca.9b07780. PubMed DOI
Horke D. A., Li Q., Blancafort L., Verlet J. R. R.. Ultrafast Above-Threshold Dynamics of the Radical Anion of a Prototypical Quinone Electron-Acceptor. Nat. Chem. 2013;5(8):711–717. doi: 10.1038/nchem.1705. PubMed DOI
Bull J. N., West C. W., Verlet J. R. R.. On the Formation of Anions: Frequency-, Angle-, and Time-Resolved Photoelectron Imaging of the Menadione Radical Anion. Chem. Sci. 2015;6(2):1578–1589. doi: 10.1039/C4SC03491K. PubMed DOI PMC
Clarke C. J., Verlet J. R. R.. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu. Rev. Phys. Chem. 2024;75(1):89–110. doi: 10.1146/annurev-physchem-090722-125031. PubMed DOI
Lietard A., Verlet J. R. R., Slimak S., Jordan K. D.. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J. Phys. Chem. A. 2021;125(32):7004–7013. doi: 10.1021/acs.jpca.1c05586. PubMed DOI
Mensa-Bonsu G., Lietard A., Tozer D. J., Verlet J. R. R.. Low Energy Electron Impact Resonances of Anthracene Probed by 2D Photoelectron Imaging of Its Radical Anion. J. Chem. Phys. 2020;152(17):174303. doi: 10.1063/5.0007470. PubMed DOI
Sieradzka A., Gorfinkiel J. D.. Theoretical Study of Resonance Formation in Microhydrated Molecules. II. Thymine-(H2O)n, n = 1,2,3,5. J. Chem. Phys. 2017;147(3):034303. doi: 10.1063/1.4993946. PubMed DOI
Fennimore M. A., Matsika S.. Electronic Resonances of Nucleobases Using Stabilization Methods. J. Phys. Chem. A. 2018;122(16):4048–4057. doi: 10.1021/acs.jpca.8b01523. PubMed DOI
Marcus R. A.. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964;15(1):155–196. doi: 10.1146/annurev.pc.15.100164.001103. DOI
Bakker H. J., Rezus Y. L. A., Timmer R. L. A.. Molecular Reorientation of Liquid Water Studied with Femtosecond Midinfrared Spectroscopy. J. Phys. Chem. A. 2008;112(46):11523–11534. doi: 10.1021/jp8012943. PubMed DOI
Anstöter C. S., DelloStritto M., Klein M. L., Matsika S.. Modeling the Ultrafast Electron Attachment Dynamics of Solvated Uracil. J. Phys. Chem. A. 2021;125(32):6995–7003. doi: 10.1021/acs.jpca.1c05288. PubMed DOI
Clarke C. J., Burrow E. M., Verlet J. R. R.. The Valence Electron Affinity of Uracil Determined by Anion Cluster Photoelectron Spectroscopy. Phys. Chem. Chem. Phys. 2024;26(29):20037–20045. doi: 10.1039/D4CP02146K. PubMed DOI
Clarke C. J., Burrow E. M., Verlet J. R. R.. The Role of Water Molecules in the Dissociation of an Electron-Molecule Contact Pair. Nat. Commun. 2025;16(1):2113. doi: 10.1038/s41467-025-57403-7. PubMed DOI PMC