The Influence of Water Molecules on the π* Shape Resonances of the Thymine Anion

. 2025 Jul 03 ; 129 (26) : 5771-5778. [epub] 20250512

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40351236

Low-energy electrons have been shown to resonantly attach to DNA, inducing strand breakages and other damaging lesions. While computational studies have suggested that the nucleobase moieties can serve as the initial attachment site, there remains ambiguity over the exact character of the temporary anion resonances that form due to the unestablished role of the surrounding environment. Here, we investigate the influence of an aqueous environment on the low-lying anion shape resonances of the π* character of the thymine anion by applying frequency-resolved photoelectron spectroscopy to thymine-water cluster anions, T-(H2O)n, with an increasing degree of hydration, n. Our results indicate that spontaneous solvent rearrangement will stabilize the π2* and π3* states into bound electronic states, and we observe evidence for internal conversion to the anion ground state, further aiding long-term electron capture via these resonances.

Zobrazit více v PubMed

Pimblott S. M., LaVerne J. A.. Production of Low-Energy Electrons by Ionizing Radiation. Radiat. Phys. Chem. 2007;76(8):1244–1247. doi: 10.1016/j.radphyschem.2007.02.012. DOI

Boudaïffa B., Cloutier P., Hunting D., Huels M. A., Sanche L.. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science. 2000;287(5458):1658–1660. doi: 10.1126/science.287.5458.1658. PubMed DOI

Martin F., Burrow P. D., Cai Z., Cloutier P., Hunting D., Sanche L.. DNA Strand Breaks Induced by 0--4 eV Electrons: The Role of Shape Resonances. Phys. Rev. Lett. 2004;93(6):068101. doi: 10.1103/PhysRevLett.93.068101. PubMed DOI

Alizadeh E., Orlando T. M., Sanche L.. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015;66(1):379–398. doi: 10.1146/annurev-physchem-040513-103605. PubMed DOI

Shao Y., Dong Y., Hunting D., Zheng Y., Sanche L.. Unified Mechanism for the Generation of Isolated and Clustered DNA Damages by a Single Low Energy (5–10 eV) Electron. J. Phys. Chem. C. 2017;121(4):2466–2472. doi: 10.1021/acs.jpcc.6b12110. DOI

Dong Y., Gao Y., Liu W., Gao T., Zheng Y., Sanche L.. Clustered DNA Damage Induced by 2–20 eV Electrons and Transient Anions: General Mechanism and Correlation to Cell Death. J. Phys. Chem. Lett. 2019;10(11):2985–2990. doi: 10.1021/acs.jpclett.9b01063. PubMed DOI

Gao Y., Zheng Y., Sanche L.. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int. J. Mol. Sci. 2021;22(15):7879. doi: 10.3390/ijms22157879. PubMed DOI PMC

Barrios R., Skurski P., Simons J.. Mechanism for Damage to DNA by Low-Energy Electrons. J. Phys. Chem. B. 2002;106(33):7991–7994. doi: 10.1021/jp013861i. DOI

Berdys J., Anusiewicz I., Skurski P., Simons J.. Damage to Model DNA Fragments from Very Low-Energy (<1 eV) Electrons. J. Am. Chem. Soc. 2004;126(20):6441–6447. doi: 10.1021/ja049876m. PubMed DOI

Bao X., Wang J., Gu J., Leszczynski J.. DNA Strand Breaks Induced by Near-Zero-Electronvolt Electron Attachment to Pyrimidine Nucleotides. Proc. Natl. Acad. Sci. U. S. A. 2006;103(15):5658–5663. doi: 10.1073/pnas.0510406103. PubMed DOI PMC

Gu J., Wang J., Leszczynski J.. Electron Attachment-Induced DNA Single Strand Breaks: C3‘ – O3‘ σ-Bond Breaking of Pyrimidine Nucleotides Predominates. J. Am. Chem. Soc. 2006;128(29):9322–9323. doi: 10.1021/ja063309c. PubMed DOI

Simons J.. How Do Low-Energy (0.1–2 eV) Electrons Cause DNA-Strand Breaks? Acc. Chem. Res. 2006;39(10):772–779. doi: 10.1021/ar0680769. PubMed DOI

Kumar A., Sevilla M. D.. Low-Energy Electron Attachment to 5‘-Thymidine Monophosphate: Modeling Single Strand Breaks Through Dissociative Electron Attachment. J. Phys. Chem. B. 2007;111(19):5464–5474. doi: 10.1021/jp070800x. PubMed DOI

Kumar A., Sevilla M. D.. The Role of Πσ* Excited States in Electron-Induced DNA Strand Break Formation: A Time-Dependent Density Functional Theory Study. J. Am. Chem. Soc. 2008;130(7):2130–2131. doi: 10.1021/ja077331x. PubMed DOI

Baccarelli I., Bald I., Gianturco F. A., Illenberger E., Kopyra J.. Electron-Induced Damage of DNA and Its Components: Experiments and Theoretical Models. Phys. Rep. 2011;508(1):1–44. doi: 10.1016/j.physrep.2011.06.004. DOI

Simons J.. Molecular Anions Perspective. J. Phys. Chem. A. 2023;127(18):3940–3957. doi: 10.1021/acs.jpca.3c01564. PubMed DOI

Ptasinska S., Denifl S., Scheier P., Illenberger E., Märk T. D.. Bond- and Site-Selective Loss of H Atoms from Nucleobases by Very-Low-Energy Electrons (<3 eV) Angew. Chem., Int. Ed. 2005;44(42):6941–6943. doi: 10.1002/anie.200502040. PubMed DOI

Gu J., Leszczynski J., Schaefer H. F. I.. Interactions of Electrons with Bare and Hydrated Biomolecules: From Nucleic Acid Bases to DNA Segments. Chem. Rev. 2012;112(11):5603–5640. doi: 10.1021/cr3000219. PubMed DOI

Kohanoff J., McAllister M., Tribello G. A., Gu B.. Interactions between Low Energy Electrons and DNA: A Perspective from First-Principles Simulations. J. Phys.: Condens. Matter. 2017;29(38):383001. doi: 10.1088/1361-648X/aa79e3. PubMed DOI

Bald, I. ; Denifl, S. . The Role of Low-Energy Electrons in DNA Radiation Damage. In Low-Energy Electrons; CRC Press: United Kingdom, 2019; pp 285–340. 10.1201/9780429058820-6. DOI

Cornetta L. M., Coutinho K., Varella M. T. do N.. Solvent Effects on the Π* Shape Resonances of Uracil. J. Chem. Phys. 2020;152(8):084301. doi: 10.1063/1.5139459. PubMed DOI

Tripathi D., Pyla M., Dutta A. K., Matsika S.. Impact of Solvation on the Electronic Resonances in Uracil. Phys. Chem. Chem. Phys. 2025;27:3588. doi: 10.1039/D4CP04333B. PubMed DOI

Markovich G., Pollack S., Giniger R., Cheshnovsky O.. Photoelectron Spectroscopy of Cl–, Br–, and I– Solvated in Water Clusters. J. Chem. Phys. 1994;101(11):9344–9353. doi: 10.1063/1.467965. DOI

Mensa-Bonsu G., Lietard A., Verlet J. R. R.. Enhancement of Electron Accepting Ability of Para -Benzoquinone by a Single Water Molecule. Phys. Chem. Chem. Phys. 2019;21(39):21689–21692. doi: 10.1039/C9CP04559G. PubMed DOI

Lietard A., Mensa-Bonsu G., Verlet J. R. R.. The Effect of Solvation on Electron Capture Revealed Using Anion Two-Dimensional Photoelectron Spectroscopy. Nat. Chem. 2021;13(8):737–742. doi: 10.1038/s41557-021-00687-1. PubMed DOI

Lietard A., Verlet J. R. R.. Effect of Microhydration on the Temporary Anion States of Pyrene. J. Phys. Chem. Lett. 2022;13(16):3529–3533. doi: 10.1021/acs.jpclett.2c00523. PubMed DOI PMC

Cooper G. A., Clarke C. J., Verlet J. R. R.. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023;145(2):1319–1326. doi: 10.1021/jacs.2c11440. PubMed DOI PMC

Ma J., Wang F., Denisov S. A., Adhikary A., Mostafavi M.. Reactivity of Prehydrated Electrons toward Nucleobases and Nucleotides in Aqueous Solution. Sci. Adv. 2017;3(12):e1701669. doi: 10.1126/sciadv.1701669. PubMed DOI PMC

Ma J., Kumar A., Muroya Y., Yamashita S., Sakurai T., Denisov S. A., Sevilla M. D., Adhikary A., Seki S., Mostafavi M.. Observation of Dissociative Quasi-Free Electron Attachment to Nucleoside via Excited Anion Radical in Solution. Nat. Commun. 2019;10(1):102. doi: 10.1038/s41467-018-08005-z. PubMed DOI PMC

Castleman A. W., Keesee R. G.. Gas-Phase Clusters: Spanning the States of Matter. Science. 1988;241(4861):36–42. doi: 10.1126/science.241.4861.36. PubMed DOI

Jortner J.. Cluster Size Effects. Z. Für Phys. At. Mol. Clust. 1992;24(3):247–275. doi: 10.1007/BF01425749. DOI

Castleman A. W., Bowen K. H.. Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter. J. Phys. Chem. 1996;100(31):12911–12944. doi: 10.1021/jp961030k. DOI

Arnold S. T., Hendricks J. H., Bowen K. H.. Photoelectron Spectroscopy of the Solvated Anion Clusters O–(Ar)N = 1–26,34: Energetics and Structure. J. Chem. Phys. 1995;102(1):39–47. doi: 10.1063/1.469415. DOI

Hendricks J. H., de Clercq H. L., Freidhoff C. B., Arnold S. T., Eaton J. G., Fancher C., Lyapustina S. A., Snodgrass J. T., Bowen K. H.. Anion Solvation at the Microscopic Level: Photoelectron Spectroscopy of the Solvated Anion Clusters, NO–(Y)­n, Where Y = Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4­(OH)­2. J. Chem. Phys. 2002;116(18):7926–7938. doi: 10.1063/1.1457444. DOI

Ayotte P., Bailey C. G., Kim J., Johnson M. A.. Vibrational Predissociation Spectroscopy of the (H2O)­6–·Arn, N⩾6. Clusters. J. Chem. Phys. 1998;108(2):444–449. doi: 10.1063/1.475406. DOI

Robertson W. H., Johnson M. A.. Molecular Aspects of Halide Ion Hydration: The Cluster Approach. Annu. Rev. Phys. Chem. 2003;54(1):173–213. doi: 10.1146/annurev.physchem.54.011002.103801. PubMed DOI

Hammer N. I., Shin J.-W., Headrick J. M., Diken E. G., Roscioli J. R., Weddle G. H., Johnson M. A.. How Do Small Water Clusters Bind an Excess Electron? Science. 2004;306(5696):675–679. doi: 10.1126/science.1102792. PubMed DOI

Hammer N. I., Roscioli J. R., Johnson M. A.. Identification of Two Distinct Electron Binding Motifs in the Anionic Water Clusters: A Vibrational Spectroscopic Study of the (H2O)­6- Isomers. J. Phys. Chem. A. 2005;109(35):7896–7901. doi: 10.1021/jp052144b. PubMed DOI

Hammer N. I., Roscioli J. R., Bopp J. C., Headrick J. M., Johnson M. A.. Vibrational Predissociation Spectroscopy of the (H2O)­6–21– Clusters in the OH Stretching Region: Evolution of the Excess Electron-Binding Signature into the Intermediate Cluster Size Regime. J. Chem. Phys. 2005;123(24):244311. doi: 10.1063/1.2134701. PubMed DOI

Roscioli J. R., Hammer N. I., Johnson M. A.. Infrared Spectroscopy of Water Cluster Anions, (H2O)N = 3–24- in the HOH Bending Region: Persistence of the Double H-Bond Acceptor (AA) Water Molecule in the Excess Electron Binding Site of the Class I Isomers. J. Phys. Chem. A. 2006;110(24):7517–7520. doi: 10.1021/jp062029g. PubMed DOI

Roscioli J. R., Diken E. G., Johnson M. A., Horvath S., McCoy A. B.. Prying Apart a Water Molecule with Anionic H-Bonding: A Comparative Spectroscopic Study of the X-·H2O (X = OH, O, F, Cl, and Br) Binary Complexes in the 600–3800 Cm-1 Region. J. Phys. Chem. A. 2006;110(15):4943–4952. doi: 10.1021/jp056022v. PubMed DOI

Asmis K. R., Santambrogio G., Zhou J., Garand E., Headrick J., Goebbert D., Johnson M. A., Neumark D. M.. Vibrational Spectroscopy of Hydrated Electron Clusters­(H2O)­15–50– via Infrared Multiple Photon Dissociation. J. Chem. Phys. 2007;126(19):191105. doi: 10.1063/1.2741508. PubMed DOI

Yang N., Duong C. H., Kelleher P. J., Johnson M. A.. Unmasking Rare, Large-Amplitude Motions in D2-Tagged I–·(H2O)­2 Isotopomers with Two-Color, Infrared–Infrared Vibrational Predissociation Spectroscopy. J. Phys. Chem. Lett. 2018;9(13):3744–3750. doi: 10.1021/acs.jpclett.8b01485. PubMed DOI

Harville P. A., Edington S. C., Moss O. C., Huang M., McCoy A. B., Johnson M. A.. High-Resolution Vibrational Predissociation Spectroscopy of I– · H2O by Single-Mode CW Infrared Excitation in a 3D Cryogenic Ion Trap. Mol. Phys. 2024;122(1–2):e2174784. doi: 10.1080/00268976.2023.2174784. DOI

Serxner D., Dessent C. E. H., Johnson M. A.. Precursor of the Iaq– Charge-transfer-to-solvent (CTTS) Band in I–·(H2O)­n Clusters. J. Chem. Phys. 1996;105(16):7231–7234. doi: 10.1063/1.472529. DOI

Ayotte P., Johnson M. A.. Electronic Absorption Spectra of Size-Selected Hydrated Electron Clusters: (H2O)­N–, N = 6–50. J. Chem. Phys. 1997;106(2):811–814. doi: 10.1063/1.473167. DOI

Herburger A., Barwa E., Ončák M., Heller J., van der Linde C., Neumark D. M., Beyer M. K.. Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H2O)­n–, n ≤ 200, by Electronic Absorption Spectroscopy. J. Am. Chem. Soc. 2019;141(45):18000–18003. doi: 10.1021/jacs.9b10347. PubMed DOI PMC

Coe J. V., Lee G. H., Eaton J. G., Arnold S. T., Sarkas H. W., Bowen K. H., Ludewigt C., Haberland H., Worsnop D. R.. Photoelectron Spectroscopy of Hydrated Electron Cluster Anions, (H2O)–n = 2–69. J. Chem. Phys. 1990;92(6):3980–3982. doi: 10.1063/1.457805. DOI

Markovich G., Giniger R., Levin M., Cheshnovsky O.. Photoelectron Spectroscopy of Iodine Anion Solvated in Water Clusters. J. Chem. Phys. 1991;95(12):9416–9419. doi: 10.1063/1.461172. DOI

Kim J., Becker I., Cheshnovsky O., Johnson M. A.. Photoelectron Spectroscopy of the `missing’ Hydrated Electron Clusters (H2O)–n, N = 3, 5, 8 and 9: Isomers and Continuity with the Dominant Clusters N = 6, 7 and ⩾11. Chem. Phys. Lett. 1998;297(1):90–96. doi: 10.1016/S0009-2614(98)01109-9. DOI

Verlet J. R. R., Bragg A. E., Kammrath A., Cheshnovsky O., Neumark D. M.. Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons. Science. 2005;307(5706):93–96. doi: 10.1126/science.1106719. PubMed DOI

Coe J. V., Arnold S. T., Eaton J. G., Lee G. H., Bowen K. H.. Photoelectron Spectra of Hydrated Electron Clusters: Fitting Line Shapes and Grouping Isomers. J. Chem. Phys. 2006;125(1):014315. doi: 10.1063/1.2212415. PubMed DOI

Ma L., Majer K., Chirot F., von Issendorff B.. Low Temperature Photoelectron Spectra of Water Cluster Anions. J. Chem. Phys. 2009;131(14):144303. doi: 10.1063/1.3245859. PubMed DOI

Lietard A., Verlet J. R. R.. Selectivity in Electron Attachment to Water Clusters. J. Phys. Chem. Lett. 2019;10(6):1180–1184. doi: 10.1021/acs.jpclett.9b00275. PubMed DOI

Coe J. V.. Connecting Cluster Anion Properties to Bulk: Ion Solvation Free Energy Trends with Cluster Size and the Surface vs Internal Nature of Iodide in Water Clusters. J. Phys. Chem. A. 1997;101(11):2055–2063. doi: 10.1021/jp962490g. DOI

Cooper G. A., Clarke C. J., Verlet J. R. R.. Electron Impact Resonances of Uracil in an Aqueous Environment from Anion Photoelectron Imaging. J. Phys. B At. Mol. Opt. Phys. 2023;56(18):185102. doi: 10.1088/1361-6455/acf353. DOI

Schiedt J., Weinkauf R., Neumark D. M., Schlag E. W.. Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters. Chem. Phys. 1998;239(1):511–524. doi: 10.1016/S0301-0104(98)00361-9. DOI

Eustis S., Wang D., Lyapustina S., Bowen K. H.. Photoelectron Spectroscopy of Hydrated Adenine Anions. J. Chem. Phys. 2007;127(22):224309. doi: 10.1063/1.2806033. PubMed DOI

Aflatooni K., Gallup G. A., Burrow P. D.. Electron Attachment Energies of the DNA Bases. J. Phys. Chem. A. 1998;102(31):6205–6207. doi: 10.1021/jp980865n. DOI

Rogers J. P., Anstöter C. S., Bull J. N., Curchod B. F. E., Verlet J. R. R.. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C6F6)­n– (n = 1–5) and I–(C6F6) J. Phys. Chem. A. 2019;123(8):1602–1612. doi: 10.1021/acs.jpca.8b11627. PubMed DOI

Even U.. The Even-Lavie Valve as a Source for High Intensity Supersonic Beam. EPJ. Technol. Instrum. 2015;2(1):17. doi: 10.1140/epjti/s40485-015-0027-5. DOI

Wiley W. C., McLaren I. H.. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955;26(12):1150–1157. doi: 10.1063/1.1715212. DOI

Eppink A. T. J. B., Parker D. H.. Velocity Map Imaging of Ions and Electrons Using Electrostatic Lenses: Application in Photoelectron and Photofragment Ion Imaging of Molecular Oxygen. Rev. Sci. Instrum. 1997;68(9):3477–3484. doi: 10.1063/1.1148310. DOI

Roberts G. M., Nixon J. L., Lecointre J., Wrede E., Verlet J. R. R.. Toward Real-Time Charged-Particle Image Reconstruction Using Polar Onion-Peeling. Rev. Sci. Instrum. 2009;80(5):053104. doi: 10.1063/1.3126527. PubMed DOI

West C. W., Bull J. N., Antonkov E., Verlet J. R. R.. Anion Resonances of Para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging. J. Phys. Chem. A. 2014;118(48):11346–11354. doi: 10.1021/jp509102p. PubMed DOI

Anstöter C. S., Bull J. N., Verlet J. R. R.. Ultrafast Dynamics of Temporary Anions Probed through the Prism of Photodetachment. Int. Rev. Phys. Chem. 2016;35(4):509–538. doi: 10.1080/0144235X.2016.1203522. DOI

Kim S., Wheeler S. E., Schaefer H. F. III.. Microsolvation Effects on the Electron Capturing Ability of Thymine: Thymine-Water Clusters. J. Chem. Phys. 2006;124(20):204310. doi: 10.1063/1.2197828. PubMed DOI

Campbell E. E. B., Levine R. D.. Delayed Ionization and Fragmentation En Route to Thermionic Emission: Statistics and Dynamics. Annu. Rev. Phys. Chem. 2000;51(1):65–98. doi: 10.1146/annurev.physchem.51.1.65. PubMed DOI

Andersen J. U., Bonderup E., Hansen K.. Thermionic Emission from Clusters. J. Phys. B: At., Mol. Opt. Phys. 2002;35(5):R1. doi: 10.1088/0953-4075/35/5/201. DOI

Adams C. L., Hansen K., Weber J. M.. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J. Phys. Chem. A. 2019;123(40):8562–8570. doi: 10.1021/acs.jpca.9b07780. PubMed DOI

Horke D. A., Li Q., Blancafort L., Verlet J. R. R.. Ultrafast Above-Threshold Dynamics of the Radical Anion of a Prototypical Quinone Electron-Acceptor. Nat. Chem. 2013;5(8):711–717. doi: 10.1038/nchem.1705. PubMed DOI

Bull J. N., West C. W., Verlet J. R. R.. On the Formation of Anions: Frequency-, Angle-, and Time-Resolved Photoelectron Imaging of the Menadione Radical Anion. Chem. Sci. 2015;6(2):1578–1589. doi: 10.1039/C4SC03491K. PubMed DOI PMC

Clarke C. J., Verlet J. R. R.. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu. Rev. Phys. Chem. 2024;75(1):89–110. doi: 10.1146/annurev-physchem-090722-125031. PubMed DOI

Lietard A., Verlet J. R. R., Slimak S., Jordan K. D.. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J. Phys. Chem. A. 2021;125(32):7004–7013. doi: 10.1021/acs.jpca.1c05586. PubMed DOI

Mensa-Bonsu G., Lietard A., Tozer D. J., Verlet J. R. R.. Low Energy Electron Impact Resonances of Anthracene Probed by 2D Photoelectron Imaging of Its Radical Anion. J. Chem. Phys. 2020;152(17):174303. doi: 10.1063/5.0007470. PubMed DOI

Sieradzka A., Gorfinkiel J. D.. Theoretical Study of Resonance Formation in Microhydrated Molecules. II. Thymine-(H2O)­n, n = 1,2,3,5. J. Chem. Phys. 2017;147(3):034303. doi: 10.1063/1.4993946. PubMed DOI

Fennimore M. A., Matsika S.. Electronic Resonances of Nucleobases Using Stabilization Methods. J. Phys. Chem. A. 2018;122(16):4048–4057. doi: 10.1021/acs.jpca.8b01523. PubMed DOI

Marcus R. A.. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964;15(1):155–196. doi: 10.1146/annurev.pc.15.100164.001103. DOI

Bakker H. J., Rezus Y. L. A., Timmer R. L. A.. Molecular Reorientation of Liquid Water Studied with Femtosecond Midinfrared Spectroscopy. J. Phys. Chem. A. 2008;112(46):11523–11534. doi: 10.1021/jp8012943. PubMed DOI

Anstöter C. S., DelloStritto M., Klein M. L., Matsika S.. Modeling the Ultrafast Electron Attachment Dynamics of Solvated Uracil. J. Phys. Chem. A. 2021;125(32):6995–7003. doi: 10.1021/acs.jpca.1c05288. PubMed DOI

Clarke C. J., Burrow E. M., Verlet J. R. R.. The Valence Electron Affinity of Uracil Determined by Anion Cluster Photoelectron Spectroscopy. Phys. Chem. Chem. Phys. 2024;26(29):20037–20045. doi: 10.1039/D4CP02146K. PubMed DOI

Clarke C. J., Burrow E. M., Verlet J. R. R.. The Role of Water Molecules in the Dissociation of an Electron-Molecule Contact Pair. Nat. Commun. 2025;16(1):2113. doi: 10.1038/s41467-025-57403-7. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electron-Impact Resonances of Anthracene in the Presence of Methanol: Does the Solvent Identity Matter?

. 2025 Jul 24 ; 16 (29) : 7307-7312. [epub] 20250711

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...