Electron-Impact Resonances of Anthracene in the Presence of Methanol: Does the Solvent Identity Matter?

. 2025 Jul 24 ; 16 (29) : 7307-7312. [epub] 20250711

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40643234

Electron impact resonances of neutral molecules can be probed using 2D photoelectron spectroscopy of their radical anions, with a core advantage of being able to introduce solvent molecules in a systematic manner through clustering. This approach has been employed previously to probe the effect of water molecules on the resonances of anthracene. Here, we extend this study to probe the resonances of anthracene in the presence of methanol. We find that the nature of the solvent has little impact on the resonances from the perspective of the anion. Only the electron affinity is observed to increase, which corresponds to a concomitant decrease in resonance energy as viewed from a free electron impacting the anthracene-methanol cluster. For a critical cluster size, ncritical, the lowest resonance becomes a bound state and the mechanism for electron loss switches from a prompt autodetachment process to a statistical thermionic emission process. We posit that the identity of a general solvent molecule only impacts the stabilization of the resonances of anthracene, which in turn affects the overall decay mechanism and ncritical, but the inherent resonance dynamics of anthracene is unaffected by the solvent.

Zobrazit více v PubMed

Rescifina A., Chiacchio M. A., Corsaro A., De Clercq E., Iannazzo D., Mastino A., Piperno A., Romeo G., Romeo R., Valveri V.. Synthesis and Biological Activity of Isoxazolidinyl Polycyclic Aromatic Hydrocarbons: Potential DNA Intercalators. J. Med. Chem. 2006;49(2):709–715. doi: 10.1021/jm050772b. PubMed DOI

Becker F. F., Banik B. K.. Polycyclic Aromatic Compounds as Anticancer Agents: Synthesis and Biological Evaluation of Methoxy Dibenzofluorene Derivatives. Front. Chem. 2014;2:55. doi: 10.3389/fchem.2014.00055. PubMed DOI PMC

Finlayson-Pitts B. J., Pitts J. N.. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science. 1997;276(5315):1045–1051. doi: 10.1126/science.276.5315.1045. PubMed DOI

Huang J., Su J.-H., Tian H.. The Development of Anthracene Derivatives for Organic Light-Emitting Diodes. J. Mater. Chem. 2012;22(22):10977–10989. doi: 10.1039/c2jm16855c. DOI

Kitamura M., Imada T., Arakawa Y.. Organic Light-Emitting Diodes Driven by Pentacene-Based Thin-Film Transistors. Appl. Phys. Lett. 2003;83(16):3410–3412. doi: 10.1063/1.1620676. DOI

Tielens A. g. g. m.. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. Annu. Rev. Astron. Astrophys. 2008;46(1):289–337. doi: 10.1146/annurev.astro.46.060407.145211. DOI

Tielens A. G. G. M.. The Molecular Universe. Rev. Mod. Phys. 2013;85(3):1021–1081. doi: 10.1103/RevModPhys.85.1021. DOI

Horke D. A., Li Q., Blancafort L., Verlet J. R. R.. Ultrafast Above-Threshold Dynamics of the Radical Anion of a Prototypical Quinone Electron-Acceptor. Nat. Chem. 2013;5(8):711–717. doi: 10.1038/nchem.1705. PubMed DOI

Bull J. N., West C. W., Verlet J. R. R.. On the Formation of Anions: Frequency-, Angle-, and Time-Resolved Photoelectron Imaging of the Menadione Radical Anion. Chem. Sci. 2015;6(2):1578–1589. doi: 10.1039/C4SC03491K. PubMed DOI PMC

Bull J. N., Anstöter C. S., Stockett M. H., Clarke C. J., Gibbard J. A., Bieske E. J., Verlet J. R. R.. Nonadiabatic Dynamics between Valence, Nonvalence, and Continuum Electronic States in a Heteropolycyclic Aromatic Hydrocarbon. J. Phys. Chem. Lett. 2021;12(49):11811–11816. doi: 10.1021/acs.jpclett.1c03532. PubMed DOI

Clarke C. J., Verlet J. R. R.. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu. Rev. Phys. Chem. 2024;75(1):89–110. doi: 10.1146/annurev-physchem-090722-125031. PubMed DOI

Lepp S., Dalgarno A.. Heating of Interstellar Gas by Large Molecules or Small Grains. Astrophys. J. 1988;335:769–773. doi: 10.1086/166965. DOI

Carelli F., Gianturco F. A.. Polycyclic Aromatic Hydrocarbon Negative Ions in Interstellar Clouds: A Quantum Study on Coronene Metastable Anions. Mon. Not. R. Astron. Soc. 2012;422(4):3643–3648. doi: 10.1111/j.1365-2966.2012.20876.x. DOI

Field, D. ; Lunt, S. L. ; Hoffmann, S. V. ; Ziesel, J. P. ; Gulley, R. J. . Do PAHs Soak up Electrons in the Interstellar Medium? New Experimental Results. Proceedings of the 3rd Cologne-Zermatt Symposium (The Physics and Chemistry of the Interstellar Medium); 1999, 367.

Omont A., Bettinger H. F., Tönshoff C.. Polyacenes and Diffuse Interstellar Bands. Astron. Astrophys. 2019;625:A41. doi: 10.1051/0004-6361/201834953. DOI

Steglich M., Bouwman J., Huisken F., Henning T.. Can Neutral and Ionized Polycyclic Aromatic Hydrocarbons Be Carriers of the Ultraviolet Extinction Bump and the Diffuse Interstellar Bands? Astrophys. J. 2011;742(1):2. doi: 10.1088/0004-637X/742/1/2. DOI

Snow T. P., Le Page V., Keheyan Y., Bierbaum V. M.. The Interstellar Chemistry of PAH Cations. Nature. 1998;391(6664):259–260. doi: 10.1038/34602. PubMed DOI

McGuire B. A., Burkhardt A. M., Kalenskii S., Shingledecker C. N., Remijan A. J., Herbst E., McCarthy M. C.. Detection of the Aromatic Molecule Benzonitrile (c-C6H5CN) in the Interstellar Medium. Science. 2018;359(6372):202–205. doi: 10.1126/science.aao4890. PubMed DOI

McGuire B. A., Loomis R. A., Burkhardt A. M., Lee K. L. K., Shingledecker C. N., Charnley S. B., Cooke I. R., Cordiner M. A., Herbst E., Kalenskii S., Siebert M. A., Willis E. R., Xue C., Remijan A. J., McCarthy M. C.. Detection of Two Interstellar Polycyclic Aromatic Hydrocarbons via Spectral Matched Filtering. Science. 2021;371(6535):1265–1269. doi: 10.1126/science.abb7535. PubMed DOI

McCarthy M. C., McGuire B. A.. Aromatics and Cyclic Molecules in Molecular Clouds: A New Dimension of Interstellar Organic Chemistry. J. Phys. Chem. A. 2021;125(16):3231–3243. doi: 10.1021/acs.jpca.1c00129. PubMed DOI

Wenzel G., Speak T. H., Changala P. B., Willis R. H. J., Burkhardt A. M., Zhang S., Bergin E. A., Byrne A. N., Charnley S. B., Fried Z. T. P., Gupta H., Herbst E., Holdren M. S., Lipnicky A., Loomis R. A., Shingledecker C. N., Xue C., Remijan A. J., Wendlandt A. E., McCarthy M. C., Cooke I. R., McGuire B. A.. Detections of Interstellar Aromatic Nitriles 2-Cyanopyrene and 4-Cyanopyrene in TMC-1. Nat. Astron. 2025;9(2):262–270. doi: 10.1038/s41550-024-02410-9. DOI

Schulz G. J.. Resonances in Electron Impact on Diatomic Molecules. Rev. Mod. Phys. 1973;45(3):423–486. doi: 10.1103/RevModPhys.45.423. DOI

Christophorou, L. G. Electron-Molecule Interactions and Their Applications; Academic Press, 1984.

West C. W., Bull J. N., Antonkov E., Verlet J. R. R.. Anion Resonances of Para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging. J. Phys. Chem. A. 2014;118(48):11346–11354. doi: 10.1021/jp509102p. PubMed DOI

West C. W., Bull J. N., Hudson A. S., Cobb S. L., Verlet J. R. R.. Excited State Dynamics of the Isolated Green Fluorescent Protein Chromophore Anion Following UV Excitation. J. Phys. Chem. B. 2015;119(10):3982–3987. doi: 10.1021/acs.jpcb.5b01432. PubMed DOI

Anstöter C. S., Bull J. N., Verlet J. R. R.. Ultrafast Dynamics of Temporary Anions Probed through the Prism of Photodetachment. Int. Rev. Phys. Chem. 2016;35(4):509–538. doi: 10.1080/0144235X.2016.1203522. DOI

Slimak S., Lietard A., Jordan K. D., Verlet J. R. R.. Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions. J. Phys. Chem. A. 2024;128(27):5321–5330. doi: 10.1021/acs.jpca.4c02756. PubMed DOI PMC

Lietard A., Verlet J. R. R., Slimak S., Jordan K. D.. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J. Phys. Chem. A. 2021;125(32):7004–7013. doi: 10.1021/acs.jpca.1c05586. PubMed DOI

Mensa-Bonsu G., Lietard A., Tozer D. J., Verlet J. R. R.. Low Energy Electron Impact Resonances of Anthracene Probed by 2D Photoelectron Imaging of Its Radical Anion. J. Chem. Phys. 2020;152(17):174303. doi: 10.1063/5.0007470. PubMed DOI

Jalehdoost A., von Issendorff B.. Photon Energy Dependence of the Photoelectron Spectra of the Anthracene Anion: On the Influence of Autodetaching States. J. Chem. Phys. 2023;158(19):194302. doi: 10.1063/5.0145038. PubMed DOI

Ashworth E. K., Anstoter C. S., Verlet J. R. R., Bull J. N.. Autodetachment Dynamics of 2-Naphthoxide and Implications for Astrophysical Anion Abundance. Phys. Chem. Chem. Phys. 2021;23(10):5817–5823. doi: 10.1039/D1CP00261A. PubMed DOI

Lietard A., Mensa-Bonsu G., Verlet J. R. R.. The Effect of Solvation on Electron Capture Revealed Using Anion Two-Dimensional Photoelectron Spectroscopy. Nat. Chem. 2021;13:737–742. doi: 10.1038/s41557-021-00687-1. PubMed DOI

Lietard A., Verlet J. R. R.. Effect of Microhydration on the Temporary Anion States of Pyrene. J. Phys. Chem. Lett. 2022;13(16):3529–3533. doi: 10.1021/acs.jpclett.2c00523. PubMed DOI PMC

Mensa-Bonsu G., Lietard A., Verlet J. R. R.. Enhancement of Electron Accepting Ability of Para-Benzoquinone by a Single Water Molecule. Phys. Chem. Chem. Phys. 2019;21(39):21689–21692. doi: 10.1039/C9CP04559G. PubMed DOI

Cooper G. A., Clarke C. J., Verlet J. R. R.. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023;145(2):1319–1326. doi: 10.1021/jacs.2c11440. PubMed DOI PMC

Clarke C. J., Burrow E. M., Verlet J. R. R.. The Influence of Water Molecules on the Π* Shape Resonances of the Thymine Anion. J. Phys. Chem. A. 2025;129(26):5771–5778. doi: 10.1021/acs.jpca.5c01948. PubMed DOI PMC

Schiedt J., Weinkauf R.. Photodetachment Photoelectron Spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster. Chem. Phys. Lett. 1997;266(1):201–205. doi: 10.1016/S0009-2614(96)01512-6. DOI

Kregel S. J., Thurston G. K., Garand E.. Photoelectron Spectroscopy of Anthracene and Fluoranthene Radical Anions. J. Chem. Phys. 2018;148(23):234306. doi: 10.1063/1.5036757. PubMed DOI

Dessent C. E. H.. A Density Functional Theory Study of the Anthracene Anion. Chem. Phys. Lett. 2000;330(1):180–187. doi: 10.1016/S0009-2614(00)01025-3. DOI

Malloci G., Mulas G., Cappellini G., Fiorentini V., Porceddu I.. Theoretical Electron Affinities of PAHs and Electronic Absorption Spectra of Their Mono-Anions. Astron. Astrophys. 2005;432(2):585–594. doi: 10.1051/0004-6361:20042246. DOI

Malloci G., Mulas G., Cappellini G., Joblin C.. Time-Dependent Density Functional Study of the Electronic Spectra of Oligoacenes in the Charge States-1, 0,+1, And+2. Chem. Phys. 2007;340(1–3):43–58. doi: 10.1016/j.chemphys.2007.07.046. DOI

Khatymov R. V., Muftakhov M. V., Shchukin P. V.. Negative Ions, Molecular Electron Affinity and Orbital Structure of Cata-Condensed Polycyclic Aromatic Hydrocarbons. Rapid Commun. Mass Spectrom. 2017;31(20):1729–1741. doi: 10.1002/rcm.7945. PubMed DOI

Jordan K. D., Burrow P. D.. Temporary Anion States of Polyatomic Hydrocarbons. Chem. Rev. 1987;87(3):557–588. doi: 10.1021/cr00079a005. DOI

Burrow P. D., Michejda J. A., Jordan K. D.. Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons. J. Chem. Phys. 1987;86(1):9–24. doi: 10.1063/1.452598. DOI

Song J. K., Lee N. K., Kim S. K.. Multiple Ion Cores in Anthracene Anion Clusters. Angew. Chem., Int. Ed. 2003;42(2):213–216. doi: 10.1002/anie.200390081. PubMed DOI

Shida T., Iwata S.. Absorption Spectra of Dianthracene Anion Radical and Anthracene Dimer Anion. J. Chem. Phys. 1972;56(6):2858–2864. doi: 10.1063/1.1677618. DOI

Shida T., Iwata S.. Electronic-Spectra of Ion Radicals and Their Molecular-Orbital Interpretation.3. Aromatic-Hydrocarbons. J. Am. Chem. Soc. 1973;95(11):3473–3483. doi: 10.1021/ja00792a005. DOI

Schiedt J., Weinkauf R.. Photodetachment Photoelectron Spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster. Chem. Phys. Lett. 1997;266(1):201–205. doi: 10.1016/S0009-2614(96)01512-6. DOI

Song J. K., Lee N. K., Kim J. H., Han S. Y., Kim S. K.. Anion Clusters of Anthracene, Ann– (N = 1–16) J. Chem. Phys. 2003;119(6):3071–3077. doi: 10.1063/1.1589743. DOI

Allan M., Regeta K., Gorfinkiel J. D., Mašín Z., Grimme S., Bannwarth C.. Recent Research Directions in Fribourg: Nuclear Dynamics in Resonances Revealed by 2-Dimensional EEL Spectra, Electron Collisions with Ionic Liquids and Electronic Excitation of Pyrimidine. Eur. Phys. J. D. 2016;70(5):123. doi: 10.1140/epjd/e2016-70153-2. DOI

Regeta K., Allan M.. Autodetachment Dynamics of Acrylonitrile Anion Revealed by Two-Dimensional Electron Impact Spectra. Phys. Rev. Lett. 2013;110(20):203201. doi: 10.1103/PhysRevLett.110.203201. PubMed DOI

Currell F., Comer J.. Observation of Friction in the Nuclear Dynamics of CO2 – near the Equilibrium Geometry of the Negative Ion. Phys. Rev. Lett. 1995;74(8):1319–1322. doi: 10.1103/PhysRevLett.74.1319. PubMed DOI

Reddish T., Currell F., Comer J.. Studies of the 2 EV Shape Resonance in N2 using a Two-Dimensional Scanning Technique. J. Phys. [E] 1988;21(2):203–207. doi: 10.1088/0022-3735/21/2/016. DOI

Weichman M. L., Neumark D. M.. Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions. Annu. Rev. Phys. Chem. 2018;69(1):101–124. doi: 10.1146/annurev-physchem-050317-020808. PubMed DOI

Adams C. L., Hansen K., Weber J. M.. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J. Phys. Chem. A. 2019;123(40):8562–8570. doi: 10.1021/acs.jpca.9b07780. PubMed DOI

Andersen J. U., Bonderup E., Hansen K.. Thermionic Emission from Clusters. J. Phys. B At. Mol. Opt. Phys. 2002;35(5):R1. doi: 10.1088/0953-4075/35/5/201. DOI

Campbell E. E. B., Levine R. D.. Delayed Ionization and Fragmentation En Route to Thermionic Emission: Statistics and Dynamics. Annu. Rev. Phys. Chem. 2000;51(1):65–98. doi: 10.1146/annurev.physchem.51.1.65. PubMed DOI

Ingólfsson, O. Low-Energy Electrons: Fundamentals and Applications; CRC Press, 2019.

Omont A.. Physics and Chemistry of Interstellar Polycyclic Aromatic Molecules. Astron. Astrophys. 1986;164:159–178.

Lepp S., Dalgarno A.. Polycyclic Aromatic Hydrocarbons in Interstellar Chemistry. Astrophys. J. 1988;324:553–556. doi: 10.1086/165915. DOI

Allamandola L. J., Tielens A. G. G. M., Barker J. R.. Interstellar Polycyclic Aromatic Hydrocarbons - The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications. Astrophys. J. Suppl. Ser. 1989;71:733–775. doi: 10.1086/191396. PubMed DOI

Wakelam V., Herbst E.. Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophys. J. 2008;680:371–383. doi: 10.1086/587734. DOI

Rogers J. P., Anstöter C. S., Bull J. N., Curchod B. F. E., Verlet J. R. R.. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C6F6)­n– (n = 1–5) and I–(C6F6) J. Phys. Chem. A. 2019;123(8):1602–1612. doi: 10.1021/acs.jpca.8b11627. PubMed DOI

Even U., Jortner J., Noy D., Lavie N., Cossart-Magos C.. Cooling of Large Molecules below 1 K and He Clusters Formation. J. Chem. Phys. 2000;112(18):8068–8071. doi: 10.1063/1.481405. DOI

Wiley W. C., McLaren I. H.. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955;26(12):1150–1157. doi: 10.1063/1.1715212. DOI

Eppink A. T. J. B., Parker D. H.. Velocity Map Imaging of Ions and Electrons Using Electrostatic Lenses: Application in Photoelectron and Photofragment Ion Imaging of Molecular Oxygen. Rev. Sci. Instrum. 1997;68(9):3477–3484. doi: 10.1063/1.1148310. DOI

Horke D. A., Roberts G. M., Lecointre J., Verlet J. R. R.. Velocity-Map Imaging at Low Extraction Fields. Rev. Sci. Instrum. 2012;83(6):063101. doi: 10.1063/1.4724311. PubMed DOI

Roberts G. M., Nixon J. L., Lecointre J., Wrede E., Verlet J. R. R.. Toward Real-Time Charged-Particle Image Reconstruction Using Polar Onion-Peeling. Rev. Sci. Instrum. 2009;80(5):053104. doi: 10.1063/1.3126527. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...