The role of water molecules in the dissociation of an electron-molecule contact pair
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/V007971/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
EP/V007971/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
PubMed
40032904
PubMed Central
PMC11876569
DOI
10.1038/s41467-025-57403-7
PII: 10.1038/s41467-025-57403-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The hydrated electron, e-(aq), is a potent reducing agent and a prototypical quantum solute. Reactions of e-(aq) often involve a contact pair comprised of a molecule and electron that are hydrated within a single sphere. However, a molecular-level understanding of the solvent-driven coordinate that links the contact pair to the free dissociated e-(aq) remains elusive. Here, we study this coordinate by kinetically trapping representative metastable intermediates as gas-phase clusters and probing them using photoelectron spectroscopy. We apply this methodology to uracil-water anion clusters, where key intermediates are identified with supporting quantum chemical calculations. Just a single water molecule drives the parent molecule and non-valence electron apart, thereby inhibiting geminate recombination to form the more stable valence-bound uracil anion. The electron-water binding is akin to bare water cluster anions, highlighting the link to larger clusters and e-(aq). Our results provide a molecular-level view of quantum solute hydration and, more broadly, of how water-driven electron-transfer reactions proceed.
Department of Chemistry Durham University Durham United Kingdom
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague 8 Czech Republic
Zobrazit více v PubMed
Kevan, L. Solvated electron structure in glassy matrixes. Acc. Chem. Res.14, 138–145 (1981).
Larsen, R. E., Glover, W. J. & Schwartz, B. J. Does the hydrated electron occupy a cavity? Science329, 65–69 (2010). PubMed
Kumar, A., Walker, J. A., Bartels, D. M. & Sevilla, M. D. A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A119, 9148–9159 (2015). PubMed PMC
Herbert, J. M. Structure of the aqueous electron. Phys. Chem. Chem. Phys.21, 20538–20565 (2019). PubMed
Bragg, A. E., Verlet, J. R. R., Kammrath, A., Cheshnovsky, O. & Neumark, D. M. Hydrated electron dynamics: From clusters to bulk. Science306, 669–671 (2004). PubMed
Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science342, 1496–1499 (2013). PubMed
Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances. Chem. Rev.105, 355–390 (2005). PubMed
Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem.2, 274–279 (2010). PubMed
Matsuzaki, K. et al. Partially hydrated electrons at the air/water interface observed by UV-excited time-resolved heterodyne-detected vibrational sum frequency generationspectroscopy. J. Am. Chem. Soc.138, 7551–7557 (2016). PubMed
Herbert, J. M. & Coons, M. P. The hydrated electron. Annu. Rev. Phys. Chem.68, 447–472 (2017). PubMed
Jordan, C. J. C., Coons, M. P., Herbert, J. M. & Verlet, J. R. R. Spectroscopy and dynamics of the hydrated electron at the water/air interface. Nat. Commun.15, 182 (2024). PubMed PMC
Jortner, J., Ottolenghi, M. & Stein, G. On the photochemistry of aqueous solutions of chloride, bromide, and iodide ions. J. Phys. Chem.68, 247–255 (1964).
Staib, A. & Borgis, D. Reaction pathways in the photodetachment of an electron from aqueous chloride: A quantum molecular dynamics study. J. Chem. Phys.104, 9027–9039 (1996).
Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem.59, 203–231 (2008). PubMed
Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun.4, 2119 (2013). PubMed
Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett.14, 870–878 (2023). PubMed
Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun.15, 2544 (2024). PubMed PMC
Sheu, W.-S. & Rossky, P. J. Electronic and solvent relaxation dynamics of a photoexcited aqueous halide. J. Phys. Chem.100, 1295–1302 (1996).
Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data17, 513–886 (1988).
Kunin, A. & Neumark, D. M. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters. Phys. Chem. Chem. Phys.21, 7239–7255 (2019). PubMed
Cooper, G. A., Clarke, C. J. & Verlet, J. R. R. Low-energy shape resonances of a nucleobase in water. J. Am. Chem. Soc.145, 1319–1326 (2023). PubMed PMC
Falcone, J. M., Becker, D., Sevilla, M. D. & Swarts, S. G. Products of the reactions of the dry and aqueous electron with hydrated DNA: hydrogen and 5,6-dihydropyrimidines. Radiat. Phys. Chem.72, 257–264 (2005).
Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M. A. & Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science287, 1658–1660 (2000). PubMed
Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem.66, 379–398 (2015). PubMed
Schiedt, J., Weinkauf, R., Neumark, D. M. & Schlag, E. W. Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. Chem. Phys.239, 511–524 (1998).
Desfrançois, C., Periquet, V., Bouteiller, Y. & Schermann, J. P. Valence and dipole binding of electrons to Uracil. J. Phys. Chem. A102, 1274–1278 (1998).
Fermi, E. & Teller, E. The capture of negative mesotrons in matter. Phys. Rev.72, 399–408 (1947).
Jordan, K. D. & Wang, F. Theory of dipole-bound anions. Annu. Rev. Phys. Chem.54, 367–396 (2003). PubMed
Eustis, S., Wang, D., Lyapustina, S. & Bowen, K. H. Photoelectron spectroscopy of hydrated adenine anions. J. Chem. Phys.127, 224309 (2007). PubMed
Cooper, J. & Zare, R. N. Angular distribution of photoelectrons. J. Chem. Phys.48, 942–943 (1968).
Sanov, A. Laboratory-frame photoelectron angular distributions in anion photodetachment: Insight into electronic structure and intermolecular interactions. Annu. Rev. Phys. Chem.65, 341–363 (2014). PubMed
Simons, J. Ejecting electrons from molecular anions via shine, shake/rattle, and roll. J. Phys. Chem. A124, 8778–8797 (2020). PubMed
Verlet, J. R. R., Anstöter, C. S., Bull, J. N. & Rogers, J. P. Role of nonvalence states in the ultrafast dynamics of isolated anions. J. Phys. Chem. A124, 3507–3519 (2020). PubMed PMC
Coe, J. V. et al. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69. J. Chem. Phys.92, 3980–3982 (1990).
Verlet, J. R. R., Bragg, A. E., Kammrath, A., Cheshnovsky, O. & Neumark, D. M. Observation of large water-cluster anions with surface-bound excess electrons. Science307, 93–96 (2005). PubMed
Coe, J. V., Arnold, S. T., Eaton, J. G., Lee, G. H. & Bowen, K. H. Photoelectron spectra of hydrated electron clusters: Fitting line shapes and grouping isomers. J. Chem. Phys.125, 014315 (2006). PubMed
Coe, J. V., Williams, S. M. & Bowen, K. H. Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem.27, 27–51 (2008).
Ma, L., Majer, K., Chirot, F. & von Issendorff, B. Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys.131, 144303 (2009). PubMed
Lietard, A. & Verlet, J. R. R. Selectivity in electron attachment to water clusters. J. Phys. Chem. Lett.10, 1180–1184 (2019). PubMed
Bailey, C. G., Dessent, C. E. H., Johnson, M. A. & Bowen, K. H. Vibronic effects in the photon energy‐dependent photoelectron spectra of the CH3CN− dipole‐bound anion. J. Chem. Phys.104, 6976–6983 (1996).
Sindelka, M. et al. Calculation of the photodetachment cross sections of the HCN− and HNC− dipole-bound anions as described by a one-electron Drude model. J. Chem. Phys.121, 1824–1829 (2004). PubMed
Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev.73, 1002–1009 (1948).
Hendricks, J. H., Lyapustina, S. A., de Clercq, H. L. & Bowen, K. H. The dipole bound-to-covalent anion transformation in uracil. J. Chem. Phys.108, 8–11 (1998).
Clarke, C. J., Burrow, E. M. & Verlet, J. R. R. The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy. Phys. Chem. Chem. Phys.26, 20037–20045 (2024). PubMed
Slimak, S. & Jordan, K. D. Binding of an electron by a finite fixed dipole. J. Phys. Chem. Lett.13, 10331–10334 (2022). PubMed
Anstöter, C. S. & Matsika, S. Understanding the interplay between the nonvalence and valence states of the Uracil Anion upon Monohydration. J. Phys. Chem. A124, 9237–9243 (2020). PubMed
Jortner, J. Cluster size effects. Z. Für Phys. At. Mol. Clust.24, 247–275 (1992).
Markovich, G., Pollack, S., Giniger, R. & Cheshnovsky, O. Photoelectron spectroscopy of Cl−, Br−, and I− solvated in water clusters. J. Chem. Phys.101, 9344–9353 (1994).
Hammer, N. I. et al. How do small water clusters bind an excess electron? Science306, 675–679 (2004). PubMed
Hammer, N. I., Roscioli, J. R. & Johnson, M. A. Identification of two distinct electron binding motifs in the anionic water clusters: A vibrational spectroscopic study of the (H2O)6- isomers. J. Phys. Chem. A109, 7896–7901 (2005). PubMed
Ayotte, P. & Johnson, M. A. Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n−, n=6–50. J. Chem. Phys.106, 811–814 (1997).
Uhlig, F., Marsalek, O. & Jungwirth, P. Unraveling the complex nature of the hydrated electron. J. Phys. Chem. Lett.3, 3071–3075 (2012). PubMed
Anusiewicz, I., Skurski, P. & Simons, J. Fate of dipole-bound anion states when hydrated. J. Phys. Chem. A124, 2064–2076 (2020). PubMed
Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem.15, 155–196 (1964).
Castleman, A. W. & Keesee, R. G. Gas-phase clusters: Spanning the states of matter. Science241, 36–42 (1988). PubMed
Coe, J. V. Connecting cluster anion properties to bulk: Ion solvation free energy trends with cluster size and the surface vs internal nature of iodide in water clusters. J. Phys. Chem. A101, 2055–2063 (1997).
Luckhaus, D., Yamamoto, Y., Suzuki, T. & Signorell, R. Genuine binding energy of the hydrated electron. Sci. Adv.3, e1603224 (2017). PubMed PMC
Majer, K., Ma, L. & von Issendorff, B. Photoelectron spectroscopy of large water cluster anions. J. Phys. Chem. A125, 8426–8433 (2021). PubMed
Okuyama, H., Suzuki, Y.-I., Karashima, S. & Suzuki, T. Charge-transfer-to-solvent reactions from I− to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids. J. Chem. Phys.145, 074502 (2016). PubMed
Even, U. “The Even-Lavie valve as a source for high intensity supersonic beam”. EPJ Tech. Instrum.2, 17 (2015).
Rogers, J. P., Anstöter, C. S., Bull, J. N., Curchod, B. F. E. & Verlet, J. R. R. Photoelectron spectroscopy of the hexafluorobenzene cluster anions: (C6F6)n– (n = 1–5) and I–(C6F6). J. Phys. Chem. A123, 1602–1612 (2019). PubMed
Dick, B. MELEXIR: maximum entropy Legendre expanded image reconstruction. A fast and efficient method for the analysis of velocity map imaging or photoelectron imaging data. Phys. Chem. Chem. Phys.21, 19499–19512 (2019). PubMed
Kendall, R. A., Dunning, T. H. Jr. & Harrison, R. J. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys96, 6796–6806 (1992).
Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett.393, 51–57 (2004).
Raghavachari, K., Trucks, G. W., Pople, J. A. & Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.157, 479–483 (1989).
Frisch, M. J. et al. Gaussian 16, Revision C.01. Gaussian, Inc. (2016).
The Influence of Water Molecules on the π* Shape Resonances of the Thymine Anion