The role of water molecules in the dissociation of an electron-molecule contact pair

. 2025 Mar 03 ; 16 (1) : 2113. [epub] 20250303

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40032904

Grantová podpora
EP/V007971/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
EP/V007971/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)

Odkazy

PubMed 40032904
PubMed Central PMC11876569
DOI 10.1038/s41467-025-57403-7
PII: 10.1038/s41467-025-57403-7
Knihovny.cz E-zdroje

The hydrated electron, e-(aq), is a potent reducing agent and a prototypical quantum solute. Reactions of e-(aq) often involve a contact pair comprised of a molecule and electron that are hydrated within a single sphere. However, a molecular-level understanding of the solvent-driven coordinate that links the contact pair to the free dissociated e-(aq) remains elusive. Here, we study this coordinate by kinetically trapping representative metastable intermediates as gas-phase clusters and probing them using photoelectron spectroscopy. We apply this methodology to uracil-water anion clusters, where key intermediates are identified with supporting quantum chemical calculations. Just a single water molecule drives the parent molecule and non-valence electron apart, thereby inhibiting geminate recombination to form the more stable valence-bound uracil anion. The electron-water binding is akin to bare water cluster anions, highlighting the link to larger clusters and e-(aq). Our results provide a molecular-level view of quantum solute hydration and, more broadly, of how water-driven electron-transfer reactions proceed.

Zobrazit více v PubMed

Kevan, L. Solvated electron structure in glassy matrixes. Acc. Chem. Res.14, 138–145 (1981).

Larsen, R. E., Glover, W. J. & Schwartz, B. J. Does the hydrated electron occupy a cavity? Science329, 65–69 (2010). PubMed

Kumar, A., Walker, J. A., Bartels, D. M. & Sevilla, M. D. A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A119, 9148–9159 (2015). PubMed PMC

Herbert, J. M. Structure of the aqueous electron. Phys. Chem. Chem. Phys.21, 20538–20565 (2019). PubMed

Bragg, A. E., Verlet, J. R. R., Kammrath, A., Cheshnovsky, O. & Neumark, D. M. Hydrated electron dynamics: From clusters to bulk. Science306, 669–671 (2004). PubMed

Elkins, M. H., Williams, H. L., Shreve, A. T. & Neumark, D. M. Relaxation mechanism of the hydrated electron. Science342, 1496–1499 (2013). PubMed

Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry:  Issues and scientific advances. Chem. Rev.105, 355–390 (2005). PubMed

Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem.2, 274–279 (2010). PubMed

Matsuzaki, K. et al. Partially hydrated electrons at the air/water interface observed by UV-excited time-resolved heterodyne-detected vibrational sum frequency generationspectroscopy. J. Am. Chem. Soc.138, 7551–7557 (2016). PubMed

Herbert, J. M. & Coons, M. P. The hydrated electron. Annu. Rev. Phys. Chem.68, 447–472 (2017). PubMed

Jordan, C. J. C., Coons, M. P., Herbert, J. M. & Verlet, J. R. R. Spectroscopy and dynamics of the hydrated electron at the water/air interface. Nat. Commun.15, 182 (2024). PubMed PMC

Jortner, J., Ottolenghi, M. & Stein, G. On the photochemistry of aqueous solutions of chloride, bromide, and iodide ions. J. Phys. Chem.68, 247–255 (1964).

Staib, A. & Borgis, D. Reaction pathways in the photodetachment of an electron from aqueous chloride: A quantum molecular dynamics study. J. Chem. Phys.104, 9027–9039 (1996).

Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem.59, 203–231 (2008). PubMed

Messina, F., Bräm, O., Cannizzo, A. & Chergui, M. Real-time observation of the charge transfer to solvent dynamics. Nat. Commun.4, 2119 (2013). PubMed

Carter-Fenk, K., Johnson, B. A., Herbert, J. M., Schenter, G. K. & Mundy, C. J. Birth of the hydrated electron via charge-transfer-to-solvent excitation of aqueous iodide. J. Phys. Chem. Lett.14, 870–878 (2023). PubMed

Lan, J., Chergui, M. & Pasquarello, A. Dynamics of the charge transfer to solvent process in aqueous iodide. Nat. Commun.15, 2544 (2024). PubMed PMC

Sheu, W.-S. & Rossky, P. J. Electronic and solvent relaxation dynamics of a photoexcited aqueous halide. J. Phys. Chem.100, 1295–1302 (1996).

Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data17, 513–886 (1988).

Kunin, A. & Neumark, D. M. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters. Phys. Chem. Chem. Phys.21, 7239–7255 (2019). PubMed

Cooper, G. A., Clarke, C. J. & Verlet, J. R. R. Low-energy shape resonances of a nucleobase in water. J. Am. Chem. Soc.145, 1319–1326 (2023). PubMed PMC

Falcone, J. M., Becker, D., Sevilla, M. D. & Swarts, S. G. Products of the reactions of the dry and aqueous electron with hydrated DNA: hydrogen and 5,6-dihydropyrimidines. Radiat. Phys. Chem.72, 257–264 (2005).

Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M. A. & Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science287, 1658–1660 (2000). PubMed

Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem.66, 379–398 (2015). PubMed

Schiedt, J., Weinkauf, R., Neumark, D. M. & Schlag, E. W. Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. Chem. Phys.239, 511–524 (1998).

Desfrançois, C., Periquet, V., Bouteiller, Y. & Schermann, J. P. Valence and dipole binding of electrons to Uracil. J. Phys. Chem. A102, 1274–1278 (1998).

Fermi, E. & Teller, E. The capture of negative mesotrons in matter. Phys. Rev.72, 399–408 (1947).

Jordan, K. D. & Wang, F. Theory of dipole-bound anions. Annu. Rev. Phys. Chem.54, 367–396 (2003). PubMed

Eustis, S., Wang, D., Lyapustina, S. & Bowen, K. H. Photoelectron spectroscopy of hydrated adenine anions. J. Chem. Phys.127, 224309 (2007). PubMed

Cooper, J. & Zare, R. N. Angular distribution of photoelectrons. J. Chem. Phys.48, 942–943 (1968).

Sanov, A. Laboratory-frame photoelectron angular distributions in anion photodetachment: Insight into electronic structure and intermolecular interactions. Annu. Rev. Phys. Chem.65, 341–363 (2014). PubMed

Simons, J. Ejecting electrons from molecular anions via shine, shake/rattle, and roll. J. Phys. Chem. A124, 8778–8797 (2020). PubMed

Verlet, J. R. R., Anstöter, C. S., Bull, J. N. & Rogers, J. P. Role of nonvalence states in the ultrafast dynamics of isolated anions. J. Phys. Chem. A124, 3507–3519 (2020). PubMed PMC

Coe, J. V. et al. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69. J. Chem. Phys.92, 3980–3982 (1990).

Verlet, J. R. R., Bragg, A. E., Kammrath, A., Cheshnovsky, O. & Neumark, D. M. Observation of large water-cluster anions with surface-bound excess electrons. Science307, 93–96 (2005). PubMed

Coe, J. V., Arnold, S. T., Eaton, J. G., Lee, G. H. & Bowen, K. H. Photoelectron spectra of hydrated electron clusters: Fitting line shapes and grouping isomers. J. Chem. Phys.125, 014315 (2006). PubMed

Coe, J. V., Williams, S. M. & Bowen, K. H. Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem.27, 27–51 (2008).

Ma, L., Majer, K., Chirot, F. & von Issendorff, B. Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys.131, 144303 (2009). PubMed

Lietard, A. & Verlet, J. R. R. Selectivity in electron attachment to water clusters. J. Phys. Chem. Lett.10, 1180–1184 (2019). PubMed

Bailey, C. G., Dessent, C. E. H., Johnson, M. A. & Bowen, K. H. Vibronic effects in the photon energy‐dependent photoelectron spectra of the CH3CN− dipole‐bound anion. J. Chem. Phys.104, 6976–6983 (1996).

Sindelka, M. et al. Calculation of the photodetachment cross sections of the HCN− and HNC− dipole-bound anions as described by a one-electron Drude model. J. Chem. Phys.121, 1824–1829 (2004). PubMed

Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev.73, 1002–1009 (1948).

Hendricks, J. H., Lyapustina, S. A., de Clercq, H. L. & Bowen, K. H. The dipole bound-to-covalent anion transformation in uracil. J. Chem. Phys.108, 8–11 (1998).

Clarke, C. J., Burrow, E. M. & Verlet, J. R. R. The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy. Phys. Chem. Chem. Phys.26, 20037–20045 (2024). PubMed

Slimak, S. & Jordan, K. D. Binding of an electron by a finite fixed dipole. J. Phys. Chem. Lett.13, 10331–10334 (2022). PubMed

Anstöter, C. S. & Matsika, S. Understanding the interplay between the nonvalence and valence states of the Uracil Anion upon Monohydration. J. Phys. Chem. A124, 9237–9243 (2020). PubMed

Jortner, J. Cluster size effects. Z. Für Phys. At. Mol. Clust.24, 247–275 (1992).

Markovich, G., Pollack, S., Giniger, R. & Cheshnovsky, O. Photoelectron spectroscopy of Cl−, Br−, and I− solvated in water clusters. J. Chem. Phys.101, 9344–9353 (1994).

Hammer, N. I. et al. How do small water clusters bind an excess electron? Science306, 675–679 (2004). PubMed

Hammer, N. I., Roscioli, J. R. & Johnson, M. A. Identification of two distinct electron binding motifs in the anionic water clusters:  A vibrational spectroscopic study of the (H2O)6- isomers. J. Phys. Chem. A109, 7896–7901 (2005). PubMed

Ayotte, P. & Johnson, M. A. Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n−, n=6–50. J. Chem. Phys.106, 811–814 (1997).

Uhlig, F., Marsalek, O. & Jungwirth, P. Unraveling the complex nature of the hydrated electron. J. Phys. Chem. Lett.3, 3071–3075 (2012). PubMed

Anusiewicz, I., Skurski, P. & Simons, J. Fate of dipole-bound anion states when hydrated. J. Phys. Chem. A124, 2064–2076 (2020). PubMed

Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem.15, 155–196 (1964).

Castleman, A. W. & Keesee, R. G. Gas-phase clusters: Spanning the states of matter. Science241, 36–42 (1988). PubMed

Coe, J. V. Connecting cluster anion properties to bulk: Ion solvation free energy trends with cluster size and the surface vs internal nature of iodide in water clusters. J. Phys. Chem. A101, 2055–2063 (1997).

Luckhaus, D., Yamamoto, Y., Suzuki, T. & Signorell, R. Genuine binding energy of the hydrated electron. Sci. Adv.3, e1603224 (2017). PubMed PMC

Majer, K., Ma, L. & von Issendorff, B. Photoelectron spectroscopy of large water cluster anions. J. Phys. Chem. A125, 8426–8433 (2021). PubMed

Okuyama, H., Suzuki, Y.-I., Karashima, S. & Suzuki, T. Charge-transfer-to-solvent reactions from I− to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids. J. Chem. Phys.145, 074502 (2016). PubMed

Even, U. “The Even-Lavie valve as a source for high intensity supersonic beam”. EPJ Tech. Instrum.2, 17 (2015).

Rogers, J. P., Anstöter, C. S., Bull, J. N., Curchod, B. F. E. & Verlet, J. R. R. Photoelectron spectroscopy of the hexafluorobenzene cluster anions: (C6F6)n– (n = 1–5) and I–(C6F6). J. Phys. Chem. A123, 1602–1612 (2019). PubMed

Dick, B. MELEXIR: maximum entropy Legendre expanded image reconstruction. A fast and efficient method for the analysis of velocity map imaging or photoelectron imaging data. Phys. Chem. Chem. Phys.21, 19499–19512 (2019). PubMed

Kendall, R. A., Dunning, T. H. Jr. & Harrison, R. J. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys96, 6796–6806 (1992).

Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett.393, 51–57 (2004).

Raghavachari, K., Trucks, G. W., Pople, J. A. & Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett.157, 479–483 (1989).

Frisch, M. J. et al. Gaussian 16, Revision C.01. Gaussian, Inc. (2016).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Influence of Water Molecules on the π* Shape Resonances of the Thymine Anion

. 2025 Jul 03 ; 129 (26) : 5771-5778. [epub] 20250512

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...