The Effect of Omega-3 Fatty Acid Supplementation and Exercise on Locomotor Activity, Exploratory Activity, and Anxiety-Like Behavior in Adult and Aged Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39012176
PubMed Central
PMC11299774
DOI
10.33549/physiolres.935245
PII: 935245
Knihovny.cz E-zdroje
- MeSH
- chování zvířat účinky léků MeSH
- kognice účinky léků MeSH
- kondiční příprava zvířat * fyziologie MeSH
- krysa rodu Rattus MeSH
- lokomoce účinky léků fyziologie MeSH
- omega-3 mastné kyseliny * aplikace a dávkování farmakologie MeSH
- pátrací chování * účinky léků MeSH
- potkani Wistar * MeSH
- potravní doplňky * MeSH
- stárnutí * psychologie účinky léků MeSH
- úzkost * prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- omega-3 mastné kyseliny * MeSH
Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.
Zobrazit více v PubMed
Delmas P. Le vieillissement physiologique n'est pas une maladie. Rev Infirm. 2014;63:33–35. doi: 10.1016/j.revinf.2014.06.010. PubMed DOI
Aksu I, Kiray M, Gencoglu C, Tas A, Acikgoz O. The effects of subtoxic dose of acetaminophen combined with exercise on the liver of rats. Physiol Res. 2023;72:383–392. doi: 10.33549/physiolres.935091. PubMed DOI PMC
Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;16(Suppl 1):3–63. doi: 10.1111/j.1600-0838.2006.00520.x. PubMed DOI
Lange-Asschenfeldt C, Kojda G. Alzheimer's disease, cerebrovascular dysfunction and the benefits of exercise: From vessels to neurons. Exp Gerontol. 2008;43:499–504. doi: 10.1016/j.exger.2008.04.002. PubMed DOI
Wang Y, Ashokan K. Physical Exercise: An Overview of Benefits from Psychological Level to Genetics and Beyond. Front Physiol. 2021;12:731858. doi: 10.3389/fphys.2021.731858. PubMed DOI PMC
Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, et al. Aerobic Exercise Training Increases Brain Volume in Aging Humans. J Gerontol A Biol Sci Med Sci. 2006;61:1166–1170. doi: 10.1093/gerona/61.11.1166. PubMed DOI
El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist. 2018;25:65–85. doi: 10.1177/1073858418771538. PubMed DOI
Lei X, Wu Y, Xu M, Jones OD, Ma J, Xu X. Physical exercise: bulking up neurogenesis in human adults. Cell Biosci. 2019;9:74. doi: 10.1186/s13578-019-0337-4. PubMed DOI PMC
Tarumi T, Yamabe T, Fukuie M, Zhu DC, Zhang R, Ogoh S, Sugawara J. Brain blood and cerebrospinal fluid flow dynamics during rhythmic handgrip exercise in young healthy men and women. J Physiol. 2021;599:1799–1813. doi: 10.1113/JP281063. PubMed DOI
Stonerock GL, Hoffman BM, Smith PJ, Blumenthal JA. Exercise as Treatment for Anxiety: Systematic Review and Analysis. Ann Behav Med. 2015;49:542–556. doi: 10.1007/s12160-014-9685-9. PubMed DOI PMC
Morres ID, Hatzigeorgiadis A, Stathi A, Comoutos N, Arpin-Cribbie C, Krommidas C, Theodorakis Y. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress Anxiety. 2018;36:39–53. doi: 10.1002/da.22842. PubMed DOI
Ramos-Sanchez CP, Schuch FB, Seedat S, Louw QA, Stubbs B, Rosenbaum S, Firth J, et al. The anxiolytic effects of exercise for people with anxiety and related disorders: An update of the available meta-analytic evidence. Psychiatry Res. 2021;302:114046. doi: 10.1016/j.psychres.2021.114046. PubMed DOI
Langhammer B, Bergland A, Rydwik E. The Importance of Physical Activity Exercise among Older People. BioMed Res Int. 2018;2018:1–3. doi: 10.1155/2018/7856823. PubMed DOI PMC
World Health Organisation. WHO guidelines on physical activity and sedentary behaviour. www.who.int . Published November 25, 2020 https://www.who.int/publications/i/item/9789240015128. PubMed
Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging. 2021;25:824–853. doi: 10.1007/s12603-021-1665-8. PubMed DOI
Boulton ER, Horne M, Todd C. Multiple influences on participating in physical activity in older age: Developing a social ecological approach. Health Expect. 2018;21:239–248. doi: 10.1111/hex.12608. PubMed DOI PMC
da Silva Neto LB, Chaves Filho AJM, Casadevall MQFC, de Azevedo OGR, Macêdo DS, de Vasconcelos PRL. Ad libitum consumption of milk supplemented with omega 3, 6, and 9 oils from infancy to middle age alters behavioral and oxidative outcomes in male mice. Braz J Med Biol Res. 2022;55:e12195. doi: 10.1590/1414-431x2022e12195. PubMed DOI PMC
Barnes S, Chowdhury S, Gatto NM, Fraser GE, Lee GJ. Omega-3 fatty acids are associated with blood-brain barrier integrity in a healthy aging population. Brain Behav. 2021;11:e2273. doi: 10.1002/brb3.2273. PubMed DOI PMC
Danthiir V, Hosking DE, Nettelbeck T, Vincent AD, Wilson C, O'Callaghan N, Calvaresi E, et al. An 18-mo randomized, double-blind, placebo-controlled trial of DHA-rich fish oil to prevent age-related cognitive decline in cognitively normal older adults. Am J Clin Nutr. 2018;107:754–762. doi: 10.1093/ajcn/nqx077. PubMed DOI
Kucharská J, Poništ S, Vančová O, Gvozdjáková A, Uličná O, Slovák L, Taghdisiesfejir M, Bauerová K. Treatment with coenzyme Q10, omega-3-polyunsaturated fatty acids and their combination improved bioenergetics and levels of coenzyme Q9 and Q10 in skeletal muscle mitochondria in experimental model of arthritis. Physiol Res. 2021;70:723–733. doi: 10.33549/physiolres.934664. PubMed DOI PMC
Zhang XW, Hou WS, Li M, Tang ZY. Omega-3 fatty acids and risk of cognitive decline in the elderly: a meta-analysis of randomized controlled trials. Aging Clin Exp Res. 2016;28:165–166. doi: 10.1007/s40520-015-0381-9. PubMed DOI
Gajdosova L, Jakus V, Muchova J. Understanding cognitive frailty in aging adults: prevalence, risk factors, pathogenesis and non-pharmacological interventions. Bratisl Med J. 2023;124:647–652. doi: 10.4149/BLL_2023_100. PubMed DOI
Butler MJ, Deems NP, Muscat S, Butt CM, Belury MA, Barrientos RM. Dietary DHA prevents cognitive impairment and inflammatory gene expression in aged male rats fed a diet enriched with refined carbohydrates. Brain Behav Immun. 2021;98:198–209. doi: 10.1016/j.bbi.2021.08.214. PubMed DOI PMC
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, et al. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun. 2021;91:716–730. doi: 10.1016/j.bbi.2020.09.022. PubMed DOI
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci. 2022;23:3472. doi: 10.3390/ijms23073472. PubMed DOI PMC
EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010;8:1461. doi: 10.2903/j.efsa.2010.1461. DOI
Sioen I, van Lieshout L, Eilander A, Fleith M, Lohner S, Szommer A, Petisca C, et al. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations - Focus on Specific Population Groups. Ann Nutr Metab. 2017;70:39–50. doi: 10.1159/000456723. PubMed DOI PMC
Thielecke F, Blannin A. Omega-3 Fatty Acids for Sport Performance-Are They Equally Beneficial for Athletes and Amateurs? A Narrative Review. Nutrients. 2020;12:3712. doi: 10.3390/nu12123712. PubMed DOI PMC
Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, Engell RE, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ. 2014;348:g2272. doi: 10.1136/bmj.g2272. PubMed DOI PMC
Lange KW. Omega-3 fatty acids and mental health. Glob Health J. 2020;4:18–30. doi: 10.1016/j.glohj.2020.01.004. DOI
Polokowski AR, Shakil H, Carmichael CL, Reigada LC. Omega-3 fatty acids and anxiety: A systematic review of the possible mechanisms at play. Nutr Neurosci. 2020;23:494–504. doi: 10.1080/1028415X.2018.1525092. PubMed DOI
Zhou L, Xiong J-Y, Chai Y-Q, Huang L, Tang Z-Y, Zhang X-F, Liu B, Zhang J-T. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry. 2022;13:933704. doi: 10.3389/fpsyt.2022.933704. PubMed DOI PMC
Gomez-Pinilla F. Collaborative effects of diet and exercise on cognitive enhancement. Nutr Health. 2011;20:165–169. doi: 10.1177/026010601102000401. PubMed DOI PMC
Yook JS, Lee M. Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids. Phys Act Nutr. 2020;24:14–18. doi: 10.20463/pan.2020.0003. PubMed DOI PMC
Dighriri IM, Alsubaie AM, Hakami FM, Hamithi DM, Alshekh MM, Khobrani FA, Dalak FE, et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus. 2022;14:e30091. doi: 10.7759/cureus.30091. PubMed DOI PMC
Wu A, Ying Z, Gomez-Pinilla F. Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neurosci. 2008;155:751–759. doi: 10.1016/j.neuroscience.2008.05.061. PubMed DOI PMC
Leckie RL, Manuck SB, Bhattacharjee N, Muldoon MF, Flory JM, Erickson KI. Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia. 2014;59:103–111. doi: 10.1016/j.neuropsychologia.2014.04.018. PubMed DOI PMC
Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 2010;1341:32–40. doi: 10.1016/j.brainres.2009.05.018. PubMed DOI PMC
Schättin A, Baier C, Mai D, Klamroth-Marganska V, Herter-Aeberli I, de Bruin ED. Effects of exergame training combined with omega-3 fatty acids on the elderly brain: a randomized double-blind placebo-controlled trial. BMC Geriatr. 2019;19:81. doi: 10.1186/s12877-019-1084-4. PubMed DOI PMC
Roya I, Asghar N, Azarbayjani MA, Maghsoud P, Javad MR. Evaluation of Effects of Oral Administration of Saffron Extract Combined with Moderate Aerobic Exercise on Glycemic Index and Lipid Profiles in Diabetic Rats. Curr Res Diabetes Obes J. 2018;8:555749. doi: 10.19080/CRDOJ.2018.08.555749. DOI
Borbélyová V, Domonkos E, Bábíčková J, Tóthová L, Bosý M, Hodosy J, Celec P. No effect of testosterone on behavior in aged Wistar rats. Aging. 2016;8:2848–2861. doi: 10.18632/aging.101096. PubMed DOI PMC
Bolles RC. Grooming behavior in the rat. J Comp Physiol Psychol. 1960;53:306–310. doi: 10.1037/h0045421. PubMed DOI
Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J. Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res. 2015;93:893–901. doi: 10.1002/jnr.23559. PubMed DOI
Carter CS, Sonntag WE, Onder G, Pahor M. Physical performance and longevity in aged rats. J Gerontol A Biol Sci Med Sci. 2002;57:B193–B197. doi: 10.1093/gerona/57.5.B193. PubMed DOI
Arnold JC, Cantu MA, Kasanga EA, Nejtek VA, Papa EV, Bugnariu N, Salvatore MF. Aging-related limit of exercise efficacy on motor decline. PLoS One. 2017;12:e0188538. doi: 10.1371/journal.pone.0188538. PubMed DOI PMC
Sudakov SK, Alekseeva EV, Nazarova GA, Bashkatova VG. Age-Related Individual Behavioural Characteristics of Adult Wistar Rats. Animals. 2021;11:2282. doi: 10.3390/ani11082282. PubMed DOI PMC
Szentes N, Tékus V, Mohos V, Borbély É, Helyes Z. Exploratory and locomotor activity, learning and memory functions in somatostatin receptor subtype 4 gene-deficient mice in relation to aging and sex. GeroScience. 2019;41:631–641. doi: 10.1007/s11357-019-00059-1. PubMed DOI PMC
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, et al. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res. 2020;383:112501. doi: 10.1016/j.bbr.2020.112501. PubMed DOI
Kim GH, Suzuki S, Kanda K. Age-related physiological and morphological changes of muscle spindles in rats. J Physiol. 2007;582:525–538. doi: 10.1113/jphysiol.2007.130120. PubMed DOI PMC
Kung TA, Cederna PS, van der Meulen JH, Urbanchek MG, Kuzon WM, Jr, Faulkner JA. Motor unit changes seen with skeletal muscle sarcopenia in oldest old rats. J Gerontol A Biol Sci Med Sci. 2014;69:657–665. doi: 10.1093/gerona/glt135. PubMed DOI PMC
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, et al. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle. 2023;13:11. doi: 10.1186/s13395-023-00321-3. PubMed DOI PMC
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med. 2020;9:741. doi: 10.3390/jcm9030741. PubMed DOI PMC
Shoji H, Takao K, Hattori S, Miyakawa T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain. 2016;9:11. doi: 10.1186/s13041-016-0191-9. PubMed DOI PMC
Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci. 2014;6:99. doi: 10.3389/fnagi.2014.00099. PubMed DOI PMC
Fogarty MJ, Brown AD, Sieck GC. Motor neuron loss in aging and amyotrophic lateral sclerosis: different fuse lengths, same explosion. Physiol Mini Rev. 2020;13:1–11. PubMed PMC
Coluccia A, Borracci P, Renna G, Giustino A, Latronico T, Riccio P, Carratù MR. Developmental omega-3 supplementation improves motor skills in juvenile-adult rats. Int J Dev Neurosci. 2009;27:599–605. doi: 10.1016/j.ijdevneu.2009.05.011. PubMed DOI
Carlos DH, Bibiana Roselly CR, Angel UL, Laura MA, Kenya Karina SR, Manuel C-BJ, Alejandra CS, et al. Cognitive improvements in a rat model with polyunsaturated fatty acids EPA and DHA through α7-nicotinic acetylcholine receptors. Nutr Neurosci. 2022;25:791–800. doi: 10.1080/1028415X.2020.1809878. PubMed DOI
Lange KW, Makulska-Gertruda E, Reisinger J, Sontag Thomas A, Hauser J. Dietary omega-3 fatty acids and locomotor activity in an animal model of attention deficit hyperactivity disorder (ADHD) Funct Foods Health Dis. 2013;3:223. doi: 10.31989/ffhd.v3i6.52. DOI
Silveira EMS, Kroth A, Santos MCQ, Silva TCB, Silveira D, Riffel APK, Scheid T, Trapp M, Partata WA. Age-related changes and effects of regular low-intensity exercise on gait, balance, and oxidative biomarkers in the spinal cord of Wistar rats. Braz J Med Biol Res. 2019;52:e8429. doi: 10.1590/1414-431x20198429. PubMed DOI PMC
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2:355–374. doi: 10.3390/nu2030355. PubMed DOI PMC
Shei RJ, Lindley MR, Mickleborough TD. Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Mil Med. 2014;179(11 Suppl):144–156. doi: 10.7205/MILMED-D-14-00160. PubMed DOI
Kraeuter AK, Guest PC, Sarnyai Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol Biol. 2019;1916:99–103. doi: 10.1007/978-1-4939-8994-2_9. PubMed DOI
Zimcikova E, Simko J, Karesova I, Kremlacek J, Malakova J. Behavioral effects of antiepileptic drugs in rats: Are the effects on mood and behavior detectable in open-field test? Seizure. 2017;52:35–40. doi: 10.1016/j.seizure.2017.09.015. PubMed DOI
Ferguson SA, Gray EP. Aging effects on elevated plus maze behavior in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley male and female rats. Physiol Behav. 2005;85:621–628. doi: 10.1016/j.physbeh.2005.06.009. PubMed DOI
Schulz D, Kouri C, Huston JP. Behavior on the water maze platform: Relationship to learning and open field exploration in aged and adult rats. Brain Res Bull. 2007;74:206–215. doi: 10.1016/j.brainresbull.2007.06.010. PubMed DOI
Sotoudeh N, Namavar MR, Zarifkar A, Heidarzadegan AR. Age-dependent changes in the medial prefrontal cortex and medial amygdala structure, and elevated plus-maze performance in the healthy male Wistar rats. IBRO Rep. 2020;9:183–194. doi: 10.1016/j.ibror.2020.08.002. PubMed DOI PMC
Gokdemir O, Cetinkaya C, Gumus H, Aksu I, Kiray M, Ates M, Kiray A, et al. The effect of exercise on anxiety- and depression-like behavior of aged rats. Biotech Histochem. 2019;95:8–17. doi: 10.1080/10520295.2019.1624825. PubMed DOI
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Gasimov E. Age-related behavioral and ultrastructural changes in the rat amygdala. Dev Neurobiol. 2020;80:433–442. doi: 10.1002/dneu.22788. PubMed DOI
Torras-Garcia M, Costa-Miserachs D, Coll-Andreu M, Portell-Cortés I. Decreased anxiety levels related to aging. Exp Brain Res. 2005;164:177–184. doi: 10.1007/s00221-005-2240-y. PubMed DOI
Adelöf J, Ross JM, Lazic SE, Zetterberg M, Wiseman J, Hernebring M. Conclusions from a behavioral aging study on male and female F2 hybrid mice on age-related behavior, buoyancy in water-based tests, and an ethical method to assess lifespan. Aging (Albany NY) 2019;11:7150–7168. doi: 10.18632/aging.102242. PubMed DOI PMC
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. Behav Brain Funct. 2021;17:6. doi: 10.1186/s12993-021-00179-9. PubMed DOI PMC
Greenwood PM, Parasuraman R. Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci. 2010;2:150. doi: 10.3389/fnagi.2010.00150. PubMed DOI PMC
Carlezon WA, Mague SD, Parow AM, Stoll AL, Cohen BM, Renshaw PF. Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry. 2005;57:343–350. doi: 10.1016/j.biopsych.2004.11.038. PubMed DOI
Ferraz AC, Delattre AM, Almendra RG, Sonagli M, Borges C, Araujo P, Andersen ML, et al. Chronic ω-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav Brain Res. 2011;219:116–122. doi: 10.1016/j.bbr.2010.12.028. PubMed DOI
Fedorova I, Salem N. Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids. 2006;75:271–289. doi: 10.1016/j.plefa.2006.07.006. PubMed DOI
Harauma A, Moriguchi T. Dietary n-3 Fatty Acid Deficiency in Mice Enhances Anxiety Induced by Chronic Mild Stress. Lipids. 2011;46:409–416. doi: 10.1007/s11745-010-3523-z. PubMed DOI
Ligeza TS, Maciejczyk M, Wyczesany M, Junghofer M. The effects of a single aerobic exercise session on mood and neural emotional reactivity in depressed and healthy young adults: A late positive potential study. Psychophysiology. 2023;60:e14137. doi: 10.1111/psyp.14137. PubMed DOI PMC
Pietrelli A, Di Nardo M, Masucci A, Brusco A, Basso N, Matkovic L. Lifelong Aerobic Exercise Reduces the Stress Response in Rats. Neuroscience. 2018;376:94–107. doi: 10.1016/j.neuroscience.2018.02.019. PubMed DOI
Uysal N, Yuksel O, Kizildag S, Yuce Z, Gumus H, Karakilic A, Guvendi G, et al. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue. Neurosci Lett. 2018;676:92–97. doi: 10.1016/j.neulet.2018.04.023. PubMed DOI
Wable GS, Min JY, Chen YW, Aoki C. Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia. Behav Neurosci. 2015;129:170–182. doi: 10.1037/bne0000040. PubMed DOI PMC
Burghardt PR, Fulk LJ, Hand GA, Wilson MA. The effects of chronic treadmill and wheel running on behavior in rats. Brain Res. 2004;1019:84–96. doi: 10.1016/j.brainres.2004.05.086. PubMed DOI
Sciolino NR, Dishman RK, Holmes PV. Voluntary exercise offers anxiolytic potential and amplifies galanin gene expression in the locus coeruleus of the rat. Behav Brain Res. 2012;233:191–200. doi: 10.1016/j.bbr.2012.05.001. PubMed DOI PMC
Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, et al. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol. 2022;65:e22347. doi: 10.1002/dev.22347. PubMed DOI
Aktoprak I, Dinc P, Gunay G, Adams M. Novel object recognition is not affected by age despite age-related brain changes. World J Neurosci. 2013;3:269–274. doi: 10.4236/wjns.2013.34036. DOI
Taoro-González L, Pereda D, Valdés-Baizabal C, González-Gómez M, Pérez JA, Mesa-Herrera F, Canerina-Amaro A, et al. Effects of Dietary n-3 LCPUFA Supplementation on the Hippocampus of Aging Female Mice: Impact on Memory, Lipid Raft-Associated Glutamatergic Receptors and Neuroinflammation. Int J Mol Sci. 2022;23:7430. doi: 10.3390/ijms23137430. PubMed DOI PMC
Teather LA, Wurtman RJ. Dietary cytidine (5′)-diphosphocholine supplementation protects against development of memory deficits in aging rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:711–717. doi: 10.1016/S0278-5846(03)00086-1. PubMed DOI
Barceló-Coblijn G, Hőgyes E, Kitajka K, Puskás LG, Zvara A, Hackler L, Jr, Nyakas C, et al. Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci U S A. 2003;100:11321–11326. doi: 10.1073/pnas.1734008100. PubMed DOI PMC
Gamoh S, Hashimoto M, Hossain S, Masumura S. Chronic Administration of Docosahexaenoic Acid Improves the Performance Of Radial Arm Maze Task In Aged Rats. Clin Exp Pharmacol Physiol. 2001;28:266–270. doi: 10.1046/j.1440-1681.2001.03437.x. PubMed DOI
Sidhu VK, Huang BX, Desai A, Kevala K, Kim HY. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging. 2016;41:73–85. doi: 10.1016/j.neurobiolaging.2016.02.007. PubMed DOI PMC
Naimo MA, Rader EP, Ensey J, Kashon ML, Baker BA. Reduced frequency of resistance-type exercise training promotes adaptation of the aged skeletal muscle microenvironment. J Appl Physiol (1985) 2019;126:1074–1087. doi: 10.1152/japplphysiol.00582.2018. PubMed DOI
Nistiar F, Racz O, Lukacinova A, Hubkova B, Novakova J, Lovasova E, Sedlakova E. Age dependency on some physiological and biochemical parameters of male Wistar rats in controlled environment. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47:1224–1233. doi: 10.1080/10934529.2012.672071. PubMed DOI
Altun M, Bergman E, Edström E, Johnson H, Ulfhake B. Behavioral impairments of the aging rat. Physiol Behav. 2007;92:911–923. doi: 10.1016/j.physbeh.2007.06.017. PubMed DOI
Mousavi SR, Jafari M, Rezaei S, Agha-Alinejad H, Sobhani V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab Anim (NY) 2020;49:119–125. doi: 10.1038/s41684-020-0503-7. PubMed DOI
Al-Thepyani M, Algarni S, Gashlan H, Elzubier M, Baz L. Evaluation of the Anti-Obesity Effect of Zeaxanthin and Exercise in HFD-Induced Obese Rats. Nutrients. 2022;14:4944. doi: 10.3390/nu14234944. PubMed DOI PMC
Emami SR, Jafari M, Haghshenas R, Ravasi A. Ameliorative effect of sixteen weeks endurance training on biochemical and oxidative damage in high fat diet induced obese rats. Indian J Exp Biol. 2023;61:107–115. doi: 10.56042/ijeb.v61i02.64101. DOI
Li FH, Sun L, Zhu M, Li T, Gao H-E, Wu D-S, Zhu L, et al. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp Gerontol. 2018;113:150–162. doi: 10.1016/j.exger.2018.10.006. PubMed DOI
Silveira EMS, Santos MCQ, da Silva TCB, Silva FBO, Machado CV, Elias L, Kolberg A, et al. Aging and low-intensity exercise change oxidative biomarkers in brain regions and radiographic measures of femur of Wistar rats. Braz J Med Biol Res. 2020;53:e9237. doi: 10.1590/1414-431x20209237. PubMed DOI PMC
Silva MG, Nunes P, Oliveira P, Ferreira R, Fardilha M, Moreira-Gonçalves D, Duarte JA, et al. Long-Term Aerobic Training Improves Mitochondrial and Antioxidant Function in the Liver of Wistar Rats Preventing Hepatic Age-Related Function Decline. Biology (Basel) 2022;11:1750. doi: 10.3390/biology11121750. PubMed DOI PMC
Combet S, Teillet L, Geelen G, Pitrat B, Gobin R, Nielsen S, Trinh-Trang-Tan MM, et al. Food restriction prevents age-related polyuria by vasopressin-dependent recruitment of aquaporin-2. Am J Physiol Renal Physiol. 2001;281:F1123–F1131. doi: 10.1152/ajprenal.0139.2001. PubMed DOI
Trinh-Trang-Tan MM, Geelen G, Teillet L, Corman B. Urea transporter expression in aging kidney and brain during dehydration. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1355–R1365. doi: 10.1152/ajpregu.00207.2003. PubMed DOI
Gälman C, Matasconi M, Persson L, Parini P, Angelin B, Rudling M. Age-induced hypercholesterolemia in the rat relates to reduced elimination but not increased intestinal absorption of cholesterol. Am J Physiol Endocrinol Metab. 2007;293:E737–E742. doi: 10.1152/ajpendo.00166.2007. PubMed DOI
La-Vu M, Tobias BC, Schuette PJ, Adhikari A. To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Front Behav Neurosci. 2020;14:145. doi: 10.3389/fnbeh.2020.00145. PubMed DOI PMC