Radiomics of pituitary adenoma using computer vision: a review
Language English Country United States Media print-electronic
Document type Journal Article, Review, Systematic Review
PubMed
39012416
PubMed Central
PMC11568991
DOI
10.1007/s11517-024-03163-3
PII: 10.1007/s11517-024-03163-3
Knihovny.cz E-resources
- Keywords
- Artificial intelligence, Computer vision, Deep neural networks, Machine learning, Pituitary adenoma, Radiomics,
- MeSH
- Adenoma * diagnostic imaging MeSH
- Deep Learning MeSH
- Humans MeSH
- Pituitary Neoplasms * diagnostic imaging MeSH
- Image Processing, Computer-Assisted methods MeSH
- Radiomics MeSH
- Machine Learning MeSH
- Artificial Intelligence MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Systematic Review MeSH
Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
Masaryk University Brno Czech Republic
Saint Michal's Hospital Bratislava Slovakia
Slovak University of Technology in Bratislava Bratislava Slovakia
See more in PubMed
Baysal B, Eser MB, Dogan MB, Kursun MA (2022) Multivariable diagnostic prediction model to detect hormone secretion profile from T2W MRI radiomics with artificial neural networks in pituitary adenomas. Medeniyet Med J 37:36–43. ISSN 21494606. 10.4274/MMJ.galenos.2022.58538 PubMed PMC
Cuocolo R, Ugga L, Solari D, Corvino S, A. D’Amico, D. Russo, P. Cappabianca, L. M. Cavallo, and A. Elefante, (2020) Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology 62:1649–1656. ISSN 14321920. 10.1007/s00234-020-02502-z PubMed PMC
Egger J, Bauer MHA, Kuhnt D, Freisleben B, Nimsky C (2010) Pituitary adenoma segmentation. In: Proceedings of biosignal 2010, JULY 14-16, 2010. BERLIN, GERMANY
Egger J, Kapur T, Nimsky C, Kikinis R (2012) Pituitary adenoma volumetry with 3D slicer. PLoS ONE 7:12. ISSN 19326203. 10.1371/journal.pone.0051788 PubMed PMC
Fan Y, Hua M, Mou A, Wu M, Liu X, Bao X, Wang R, Feng M (2019a) Preoperative noninvasive radiomics approach predicts tumor consistency in patients with acromegaly: development and multicenter prospective validation. Front Endocrinol 10:403 PubMed PMC
Fan Y, Liu Z, Hou B, Li L, Liu X, Liu Z, Wang R, Lin Y, Feng F, Tian J, Feng M (2019b) Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma. Eur J Radiol 121:108647 PubMed
Feng T, Fang Y, Pei Z, Li Z, Chen H, Hou P, Wei L, Wang R, Wang S (2022) A convolutional neural network model for detecting sellar floor destruction of pituitary adenoma on magnetic resonance imaging scans. Front Neurosci 16:900519 PubMed PMC
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577 PubMed PMC
Jia J, Meng L, Song G, Sun S, Li C, Tian J, Zhang Y (2020) Prediction of response to stereotactic radiotherapy for nonfunctioning pituitary adenoma using radiomic features. PREPRINT (Version 1) available at Research Square
Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F (2018) Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In: International conference on machine learning, pp 2668–2677. PMLR
Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O (2019) Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on t2-weighted mri. Eur Radiol 29:2731–2739 PubMed
Lei T, Nandi AK (2022) Image segmentation: principles, techniques, and applications. Wiley
Li H, Zhao Q, Zhang Y, Sai K, Xu L, Mou Y, Xie Y, Ren J, Jiang X (2021a) Image-driven classification of functioning and nonfunctioning pituitary adenoma by deep convolutional neural networks. Comput Struct Biotechnol J 19:3077–3086 PubMed PMC
Li H, Liu Z, Li F, Shi F, Xia Y, Zhou Q, Zeng Q (2024) Preoperatively predicting KI67 expression in pituitary adenomas using deep segmentation network and radiomics analysis based on multiparameter MRI. Acad Radiol 31(2):617–627 PubMed
Li Q, Zhu Y, Chen M, Guo R, Hu Q, Lu Y, Deng Z, Deng S, Zhang T, Wen H, Gao R, Nie Y, Li H, Chen J, Shi G, Shen J, Cheung WW, Liu Z, Guo Y, Chen Y (2021b) Development and validation of a deep learning algorithm to automatic detection of pituitary microadenoma from MRI. Front Med 8:758690 PubMed PMC
Machado LF, Elias PC, Moreira AC, Dos Santos AC, Junior LOM (2020) MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas. Comput Biol Med 124:103966 PubMed
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G (2020) Introduction to radiomics. J Nucl Med 61(4):488–495 PubMed PMC
Mendi BAR, Batur H, Çay N, Çakır BT (2023) Radiomic analysis of preoperative magnetic resonance imaging for the prediction of pituitary adenoma consistency. Acta Radiol 64(8):2470–2478 PubMed
Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M-A, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H-C, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. 10.1109/TMI.2014.2377694 PubMed PMC
Mourão N, Calisto FM, Nascimento J (2020) MIMBCD-UI: AI visual explaination - Lesions Types, 01. 10.13140/RG.2.2.33693.26086 DOI
Niu J, Zhang S, Ma S, Diao J, Zhou W, Tian J, Zang Y, Jia W (2019) Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol 29:1625–1634 PubMed PMC
Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee S-K (2020) Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 23:691–700 PubMed
Park YW, Eom J, Kim S, Kim H, Ahn SS, Ku CR, Kim EH, Lee EJ, Kim SH, Lee S-K (2021) Radiomics with ensemble machine learning predicts dopamine agonist response in patients with prolactinoma. J Clin Endocrinol & Metab 106(8):e3069–e3077 PubMed
Peng A, Dai H, Duan H, Chen Y, Huang J, Zhou L, Chen L (2020) A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging. Eur J Radiol 125:108892 PubMed
Qian Y, Qiu Y, Li C-C, Wang Z-Y, Cao B-W, Huang H-X, Ni Y-H, Chen L-L, Sun J-Y (2020) A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network. Pituitary 23:246–252 PubMed
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp 234–241. Springer
Rui W, Qiao N, Wu Y, Zhang Y, Aili A, Zhang Z, Ye H, Wang Y, Zhao Y, Yao Z(2022) Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. European Radiology, pp 1–9, PubMed
Sathya A, Goyal-Honavar A, Chacko AG, Jasper A, Chacko G, Devakumar D, Seelam JA, Sasidharan BK, Pavamani SP, Thomas HMT (2024) Is radiomics a useful addition to magnetic resonance imaging in the preoperative classification of PitNETs? Acta Neurochir 166(1):91 PubMed
Shu X, Zhou Y, Li F, Zhou T, Meng X, Wang F, Zhang Z, Pu J, Xu B (2021) Three-dimensional semantic segmentation of pituitary adenomas based on the deep learning framework-nnU-net: a clinical perspective. Micromachines 12(12):1473 PubMed PMC
Siddique N, Paheding S, Elkin CP, Devabhaktuni V (2021) U-net and its variants for medical image segmentation: a review of theory and applications. Ieee Access 9:82031–82057
Šimundić A-M (2009) Measures of diagnostic accuracy: basic definitions. ejifcc 19(4):203 PubMed PMC
Staartjes VE, Serra C, Muscas G, Maldaner N, Akeret K, van Niftrik CH, Fierstra J, Holzmann D, Regli L (2018) Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. Neurosurg Focus 45(5):E12 PubMed
Ugga L, Cuocolo R, Solari D, Guadagno E, D’Amico A, Somma T, Cappabianca P, del Basso ML, de Caro LM, Cavallo, Brunetti A (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373 PubMed
Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ (2017) Computational radiomics system to decode the radiographic phenotype. Cancer research 77(21):e104–e107 PubMed PMC
Wallis D, Buvat I (2022) Clever Hans effect found in a widely used brain tumour MRI dataset. Med Image Anal 77:102368 PubMed
Wan T, Wu C, Meng M, Liu T, Li C, Ma J, Qin Z (2022) Radiomic features on multiparametric MRI for preoperative evaluation of pituitary macroadenomas consistency: preliminary findings. J Magn Reson Imaging 55(5):1491–1503 PubMed
Wang H, Chang J, Zhang W, Fang Y, Li S, Fan Y, Jiang S, Yao Y, Deng K, Lu L et al (2023) Radiomics model and clinical scale for the preoperative diagnosis of silent corticotroph adenomas. J Endocrinol Investig 46(9):1843–1854 PubMed
Wang Y, Chen S, Shi F, Cheng X, Xu Q, Li J, Luo S, Jiang P, Wei Y, Zhou C et al (2021) MR-based radiomics for differential diagnosis between cystic pituitary adenoma and Rathke cleft cyst. Comput Math Methods Med 1:6438861 PubMed PMC
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P (2021) Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 48:3961–3974 PubMed PMC
Zeynalova A, Koçk B, Durmaz ES, Çomunoğlu N, Ozcan K, Ozcan G, Turk O, Tanriover N, Kocer N, Kızılkılıç O, Işlak C (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 61:767–774 PubMed
Zhang C, Heng X, Neng W, Chen H, Sun A, Li J, Wang M (2022a) Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurg J 8(04):221–229 PubMed PMC
Zhang S, Song G, Zang Y, Jia J, Wang C, Li C, Tian J, Dong D, Zhang Y (2018a) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28:3692–3701 PubMed
Zhang S, Song G, Zang Y, Jia J, Wang C, Li C, Tian J, Dong D, Zhang Y (2018b) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28:3692–3701 PubMed
Zhang Y, Ko C-C, Chen J-H, Chang K-T, Chen T-Y, Lim S-W, Tsui Y-K, Su M-Y (2020) Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas. Front Oncol 10:590083 PubMed PMC
Zhang Y, Luo Y, Kong X, Wan T, Long Y, Ma J (2022b) A preoperative MRI-based radiomics-clinicopathological classifier to predict the recurrence of pituitary macroadenoma within 5 years. Front Neurol 12:780628 PubMed PMC
Zukič D, Egger J, Bauer MHA, Kuhnt D, Carl B, Freisleben B, Kolb A, Nimsky C (2011) Preoperative volume determination for pituitary adenoma. Medical Imaging 2011: Computer-Aided Diagnosis, vol 7963. SPIE
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RT, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EA, Rahmim A, Rao AU, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJ, Tanadini-Lang S, Thorwarth D, Troost EG, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FH, Whybra P, Richter C, Löck S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338 PubMed PMC