Fixation times on directed graphs

. 2024 Jul ; 20 (7) : e1012299. [epub] 20240718

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39024375

Computing the rate of evolution in spatially structured populations is difficult. A key quantity is the fixation time of a single mutant with relative reproduction rate r which invades a population of residents. We say that the fixation time is "fast" if it is at most a polynomial function in terms of the population size N. Here we study fixation times of advantageous mutants (r > 1) and neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some one-way connections. We obtain three main results. First, we prove that for any directed graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an efficient algorithm that gives an upper bound for the fixation time for any graph and any r ≥ 1. Third, we identify a broad class of directed graphs with fast fixation times for any r ≥ 1. This class includes previously studied amplifiers of selection, such as Superstars and Metafunnels. We also show that on some graphs the fixation time is not a monotonically declining function of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.

Zobrazit více v PubMed

Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624–626. doi: 10.1038/217624a0 PubMed DOI

Moran PAP. Random processes in genetics. In: Mathematical proceedings of the cambridge philosophical society. vol. 54. Cambridge University Press; 1958. p. 60–71.

Ewens WJ. Mathematical population genetics: theoretical introduction. vol. 27. Springer; 2004.

Durrett R, Levin S. The importance of being discrete (and spatial). Theoretical population biology. 1994;46(3):363–394. doi: 10.1006/tpbi.1994.1032 DOI

Whitlock MC. Fixation probability and time in subdivided populations. Genetics. 2003;164(2):767–779. doi: 10.1093/genetics/164.2.767 PubMed DOI PMC

Slatkin M. Fixation probabilities and fixation times in a subdivided population. Evolution. 1981; p. 477–488. doi: 10.1111/j.1558-5646.1981.tb04911.x PubMed DOI

Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA, Caylor KK, et al.. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science. 2015;347(6222):651–655. doi: 10.1126/science.1261487 PubMed DOI

Tilman D, May RM, Lehman CL, Nowak MA. Habitat destruction and the extinction debt. Nature. 1994;371(64926492):65–66. doi: 10.1038/371065a0 DOI

Comins HN, Hassell MP, May RM. The Spatial Dynamics of Host–Parasitoid Systems. Journal of Animal Ecology. 1992;61(3):735–748. doi: 10.2307/5627 DOI

Hassell MP, Comins HN, Mayt RM. Spatial structure and chaos in insect population dynamics. Nature. 1991;353(63416341):255–258. doi: 10.1038/353255a0 DOI

Levin SA. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology. 1992;73(6):1943–1967. doi: 10.2307/1941447 DOI

Levin SA. Population Dynamic Models in Heterogeneous Environments. Annual Review of Ecology and Systematics. 1976;7(1):287–310. doi: 10.1146/annurev.es.07.110176.001443 DOI

Tilman D, Kareiva P. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press; 1997.

Barton NH. The probability of fixation of a favoured allele in a subdivided population. Genetics Research. 1993;62(2):149–157. doi: 10.1017/S0016672300031748 DOI

Fisher RA, Ford EB. The “Sewall Wright effect. Heredity. 1950;4:117–19. doi: 10.1038/hdy.1950.8 PubMed DOI

Maruyama T. Effective number of alleles in a subdivided population. Theoretical Population Biology. 1970;1(3):273–306. doi: 10.1016/0040-5809(70)90047-X PubMed DOI

Nagylaki T, Lucier B. NUMERICAL ANALYSIS OF RANDOM DRIFT IN A CLINE. Genetics. 1980;94(2):497–517. doi: 10.1093/genetics/94.2.497 PubMed DOI PMC

S W. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the sixth international congress of Genetics. 1932;1:356–366.

Wright S. Evolution in Mendelian Populations. Genetics. 1931;16(2):97–159. doi: 10.1093/genetics/16.2.97 PubMed DOI PMC

Allen B, Lippner G, Chen YT, Fotouhi B, Momeni N, Yau ST, et al.. Evolutionary dynamics on any population structure. Nature. 2017;544(76497649):227–230. doi: 10.1038/nature21723 PubMed DOI

Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 2004;428(69836983):643–646. doi: 10.1038/nature02360 PubMed DOI

Nakamaru M, Matsuda H, Iwasa Y. The Evolution of Cooperation in a Lattice-Structured Population. Journal of Theoretical Biology. 1997;184(1):65–81. doi: 10.1006/jtbi.1996.0243 PubMed DOI

Nowak MA, May RM. Evolutionary games and spatial chaos. Nature. 1992;359(63986398):826–829. doi: 10.1038/359826a0 DOI

Ohtsuki H, Hauert C, Lieberman E, Nowak MA. A simple rule for the evolution of cooperation on graphs and social networks. Nature. 2006;441(70927092):502–505. doi: 10.1038/nature04605 PubMed DOI PMC

Grenfell BT, Bjørnstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. 2001;414(68656865):716–723. doi: 10.1038/414716a PubMed DOI

Lloyd AL, May RM. Spatial Heterogeneity in Epidemic Models. Journal of Theoretical Biology. 1996;179(1):1–11. doi: 10.1006/jtbi.1996.0042 PubMed DOI

May RM, Lloyd AL. Infection dynamics on scale-free networks. Physical Review E. 2001;64(6):066112. doi: 10.1103/PhysRevE.64.066112 PubMed DOI

May RM, Nowak MA. Superinfection, Metapopulation Dynamics, and the Evolution of Diversity. Journal of Theoretical Biology. 1994;170(1):95–114. doi: 10.1006/jtbi.1994.1171 PubMed DOI

Noble R, Burri D, Le Sueur C, Lemant J, Viossat Y, Kather JN, et al.. Spatial structure governs the mode of tumour evolution. Nature Ecology & Evolution. 2022;6(22):207–217. doi: 10.1038/s41559-021-01615-9 PubMed DOI PMC

Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature. 2015;525(75687568):261–264. doi: 10.1038/nature14971 PubMed DOI PMC

Barton NH. The dynamics of hybrid zones. Heredity. 1979;43(33):341–359. doi: 10.1038/hdy.1979.87 DOI

Mitchell JC. Social Networks. Annual Review of Anthropology. 1974;3(1):279–299. doi: 10.1146/annurev.an.03.100174.001431 DOI

Lieberman E, Hauert C, Nowak MA. Evolutionary dynamics on graphs. Nature. 2005;433(7023):312–316. doi: 10.1038/nature03204 PubMed DOI

Díaz J, Mitsche D. A survey of the modified Moran process and evolutionary graph theory. Computer Science Review. 2021;39:100347. doi: 10.1016/j.cosrev.2020.100347 DOI

Donnelly P, Welsh D. Finite particle systems and infection models. In: Mathematical Proceedings of the Cambridge Philosophical Society. vol. 94. Cambridge University Press; 1983. p. 167–182.

Chakraborty PP, Nemzer LR, Kassen R. Experimental evidence that network topology can accelerate the spread of beneficial mutations. Evolution Letters. 2023;7(6):447–456. doi: 10.1093/evlett/qrad047 PubMed DOI PMC

Hindersin L, Traulsen A. Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS computational biology. 2015;11(11):e1004437. doi: 10.1371/journal.pcbi.1004437 PubMed DOI PMC

Broom M, Hadjichrysanthou C, Rychtář J. Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010;466(2117):1327–1346. doi: 10.1098/rspa.2009.0487 DOI

Broom M, Hadjichrysanthou C, Rychtář J, Stadler B. Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010;466(2121):2795–2798. doi: 10.1098/rspa.2010.0067 DOI

Monk T, van Schaik A. Wald’s martingale and the conditional distributions of absorption time in the Moran process. Proceedings of the Royal Society A. 2020;476(2241):20200135. doi: 10.1098/rspa.2020.0731 PubMed DOI PMC

Monk T, van Schaik A. Martingales and the characteristic functions of absorption time on bipartite graphs. Royal Society Open Science. 2021;8(10):210657. doi: 10.1098/rsos.210657 PubMed DOI PMC

Nowak MA, Michor F, Iwasa Y. The linear process of somatic evolution. Proceedings of the National Academy of Sciences. 2003;100(25):14966–14969. doi: 10.1073/pnas.2535419100 PubMed DOI PMC

Nowak MA. Evolutionary dynamics: exploring the equations of life. Harvard University Press; 2006.

Adlam B, Chatterjee K, Nowak MA. Amplifiers of selection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;471(2181):20150114. doi: 10.1098/rspa.2015.0114 DOI

Hadjichrysanthou C, Broom M, Rychtár J. Evolutionary games on star graphs under various updating rules. Dynamic Games and Applications. 2011;1(3):386–407. doi: 10.1007/s13235-011-0022-7 DOI

Monk T, Green P, Paulin M. Martingales and fixation probabilities of evolutionary graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;470(2165):20130730. doi: 10.1098/rspa.2013.0730 DOI

Chalub FA. Asymptotic expression for the fixation probability of a mutant in star graphs. arXiv preprint arXiv:14043944. 2014;.

Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. Amplification on undirected population structures: comets beat stars. Scientific reports. 2017;7(1):82. doi: 10.1038/s41598-017-00107-w PubMed DOI PMC

Díaz J, Goldberg LA, Mertzios GB, Richerby D, Serna M, Spirakis PG. On the fixation probability of superstars. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013;469(2156):20130193. doi: 10.1098/rspa.2013.0193 DOI

Jamieson-Lane A, Hauert C. Fixation probabilities on superstars, revisited and revised. Journal of Theoretical Biology. 2015;382:44–56. doi: 10.1016/j.jtbi.2015.06.029 PubMed DOI

Galanis A, Göbel A, Goldberg LA, Lapinskas J, Richerby D. Amplifiers for the Moran process. Journal of the ACM (JACM). 2017;64(1):1–90. doi: 10.1145/3019609 DOI

Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Population structure determines the tradeoff between fixation probability and fixation time. Communications biology. 2019;2(1):138. doi: 10.1038/s42003-019-0373-y PubMed DOI PMC

Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Communications biology. 2018;1(1):71. doi: 10.1038/s42003-018-0078-7 PubMed DOI PMC

Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Fast and strong amplifiers of natural selection. Nature Communications. 2021;12(1):4009. doi: 10.1038/s41467-021-24271-w PubMed DOI PMC

Sharma N, Traulsen A. Suppressors of fixation can increase average fitness beyond amplifiers of selection. Proceedings of the National Academy of Sciences. 2022;119(37):e2205424119. doi: 10.1073/pnas.2205424119 PubMed DOI PMC

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT press; 2022.

Díaz J, Goldberg LA, Mertzios GB, Richerby D, Serna M, Spirakis PG. Approximating fixation probabilities in the generalized moran process. Algorithmica. 2014;69:78–91. doi: 10.1007/s00453-012-9722-7 DOI

Goldberg LA, Lapinskas J, Richerby D. Phase transitions of the Moran process and algorithmic consequences. Random Structures & Algorithms. 2020;56(3):597–647. doi: 10.1002/rsa.20890 DOI

Díaz J, Goldberg LA, Richerby D, Serna M. Absorption time of the Moran process. Random Structures & Algorithms. 2016;49(1):137–159. doi: 10.1002/rsa.20617 DOI

Ibsen-Jensen R, Chatterjee K, Nowak MA. Computational complexity of ecological and evolutionary spatial dynamics. Proceedings of the National Academy of Sciences. 2015;112(51):15636–15641. doi: 10.1073/pnas.1511366112 PubMed DOI PMC

Altrock PM, Gokhale CS, Traulsen A. Stochastic slowdown in evolutionary processes. Physical Review E. 2010;82(1):011925. doi: 10.1103/PhysRevE.82.011925 PubMed DOI

Maciejewski W. Reproductive value in graph-structured populations. Journal of Theoretical Biology. 2014;340:285–293. doi: 10.1016/j.jtbi.2013.09.032 PubMed DOI

Durocher L, Karras P, Pavlogiannis A, Tkadlec J. Invasion dynamics in the biased voter process. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence; 2022. p. 265–271.

Monk T. Martingales and the fixation probability of high-dimensional evolutionary graphs. Journal of theoretical biology. 2018;451:10–18. doi: 10.1016/j.jtbi.2018.04.039 PubMed DOI

Monk T, van Schaik A. Martingales and the fixation time of evolutionary graphs with arbitrary dimensionality. Royal Society Open Science. 2022;9(5):220011. doi: 10.1098/rsos.220011 PubMed DOI PMC

Allen B, Sample C, Jencks R, Withers J, Steinhagen P, Brizuela L, et al.. Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs. PLoS computational biology. 2020;16(1):e1007529. doi: 10.1371/journal.pcbi.1007529 PubMed DOI PMC

McKay BD, Piperno A. Practical graph isomorphism, II. Journal of symbolic computation. 2014;60:94–112. doi: 10.1016/j.jsc.2013.09.003 DOI

Möller M, Hindersin L, Traulsen A. Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time. Communications biology. 2019;2(1):137. doi: 10.1038/s42003-019-0374-x PubMed DOI PMC

Goldberg LA, Lapinskas J, Lengler J, Meier F, Panagiotou K, Pfister P. Asymptotically optimal amplifiers for the Moran process. Theoretical Computer Science. 2019;758:73–93. doi: 10.1016/j.tcs.2018.08.005 DOI

Downey RG, Fellows MR. Parameterized complexity. Springer Science & Business Media; 2012.

Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, et al.. Parameterized algorithms. vol. 4. Springer; 2015.

Levene H. Genetic equilibrium when more than one ecological niche is available. The American Naturalist. 1953;87(836):331–333. doi: 10.1086/281792 DOI

Bulmer M. Multiple niche polymorphism. The American Naturalist. 1972;106(948):254–257. doi: 10.1086/282765 DOI

Felsenstein J. The theoretical population genetics of variable selection and migration. Annual review of genetics. 1976;10(1):253–280. doi: 10.1146/annurev.ge.10.120176.001345 PubMed DOI

Yeaman S, Otto SP. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution. 2011;65(7):2123–2129. doi: 10.1111/j.1558-5646.2011.01277.x PubMed DOI

Svoboda J, Tkadlec J, Kaveh K, Chatterjee K. Coexistence times in the Moran process with environmental heterogeneity. Proceedings of the Royal Society A. 2023;479(2271):20220685. doi: 10.1098/rspa.2022.0685 DOI

Maciejewski W, Puleo GJ. Environmental evolutionary graph theory. Journal of theoretical biology. 2014;360:117–128. doi: 10.1016/j.jtbi.2014.06.040 PubMed DOI

Kaveh K, McAvoy A, Nowak MA. Environmental fitness heterogeneity in the Moran process. Royal Society open science. 2019;6(1):181661. doi: 10.1098/rsos.181661 PubMed DOI PMC

Brendborg J, Karras P, Pavlogiannis A, Rasmussen AU, Tkadlec J. Fixation maximization in the positional moran process. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36; 2022. p. 9304–9312.

Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Limits on amplifiers of natural selection under death-Birth updating. PLoS computational biology. 2020;16(1):e1007494. doi: 10.1371/journal.pcbi.1007494 PubMed DOI PMC

Svoboda J, Joshi S, Tkadlec J, Chatterjee K. Amplifiers of selection for the Moran process with both Birth-death and death-Birth updating. PLOS Computational Biology. 2024;20(3):e1012008. doi: 10.1371/journal.pcbi.1012008 PubMed DOI PMC

Sood V, Antal T, Redner S. Voter models on heterogeneous networks. Physical Review E. 2008;77(4):041121. doi: 10.1103/PhysRevE.77.041121 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Colonization times in Moran process on graphs

. 2025 May ; 21 (5) : e1012868. [epub] 20250505

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...