Fixation times on directed graphs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39024375
PubMed Central
PMC11288448
DOI
10.1371/journal.pcbi.1012299
PII: PCOMPBIOL-D-24-00613
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- biologická evoluce MeSH
- modely genetické MeSH
- mutace MeSH
- počítačová simulace MeSH
- výpočetní biologie * metody MeSH
- Publikační typ
- časopisecké články MeSH
Computing the rate of evolution in spatially structured populations is difficult. A key quantity is the fixation time of a single mutant with relative reproduction rate r which invades a population of residents. We say that the fixation time is "fast" if it is at most a polynomial function in terms of the population size N. Here we study fixation times of advantageous mutants (r > 1) and neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some one-way connections. We obtain three main results. First, we prove that for any directed graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an efficient algorithm that gives an upper bound for the fixation time for any graph and any r ≥ 1. Third, we identify a broad class of directed graphs with fast fixation times for any r ≥ 1. This class includes previously studied amplifiers of selection, such as Superstars and Metafunnels. We also show that on some graphs the fixation time is not a monotonically declining function of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.
Computer Science Institute Charles University Prague Czech Republic
Department of Mathematics Harvard University Cambridge Massachusetts United States of America
Zobrazit více v PubMed
Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624–626. doi: 10.1038/217624a0 PubMed DOI
Moran PAP. Random processes in genetics. In: Mathematical proceedings of the cambridge philosophical society. vol. 54. Cambridge University Press; 1958. p. 60–71.
Ewens WJ. Mathematical population genetics: theoretical introduction. vol. 27. Springer; 2004.
Durrett R, Levin S. The importance of being discrete (and spatial). Theoretical population biology. 1994;46(3):363–394. doi: 10.1006/tpbi.1994.1032 DOI
Whitlock MC. Fixation probability and time in subdivided populations. Genetics. 2003;164(2):767–779. doi: 10.1093/genetics/164.2.767 PubMed DOI PMC
Slatkin M. Fixation probabilities and fixation times in a subdivided population. Evolution. 1981; p. 477–488. doi: 10.1111/j.1558-5646.1981.tb04911.x PubMed DOI
Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA, Caylor KK, et al.. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science. 2015;347(6222):651–655. doi: 10.1126/science.1261487 PubMed DOI
Tilman D, May RM, Lehman CL, Nowak MA. Habitat destruction and the extinction debt. Nature. 1994;371(64926492):65–66. doi: 10.1038/371065a0 DOI
Comins HN, Hassell MP, May RM. The Spatial Dynamics of Host–Parasitoid Systems. Journal of Animal Ecology. 1992;61(3):735–748. doi: 10.2307/5627 DOI
Hassell MP, Comins HN, Mayt RM. Spatial structure and chaos in insect population dynamics. Nature. 1991;353(63416341):255–258. doi: 10.1038/353255a0 DOI
Levin SA. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology. 1992;73(6):1943–1967. doi: 10.2307/1941447 DOI
Levin SA. Population Dynamic Models in Heterogeneous Environments. Annual Review of Ecology and Systematics. 1976;7(1):287–310. doi: 10.1146/annurev.es.07.110176.001443 DOI
Tilman D, Kareiva P. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press; 1997.
Barton NH. The probability of fixation of a favoured allele in a subdivided population. Genetics Research. 1993;62(2):149–157. doi: 10.1017/S0016672300031748 DOI
Fisher RA, Ford EB. The “Sewall Wright effect. Heredity. 1950;4:117–19. doi: 10.1038/hdy.1950.8 PubMed DOI
Maruyama T. Effective number of alleles in a subdivided population. Theoretical Population Biology. 1970;1(3):273–306. doi: 10.1016/0040-5809(70)90047-X PubMed DOI
Nagylaki T, Lucier B. NUMERICAL ANALYSIS OF RANDOM DRIFT IN A CLINE. Genetics. 1980;94(2):497–517. doi: 10.1093/genetics/94.2.497 PubMed DOI PMC
S W. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the sixth international congress of Genetics. 1932;1:356–366.
Wright S. Evolution in Mendelian Populations. Genetics. 1931;16(2):97–159. doi: 10.1093/genetics/16.2.97 PubMed DOI PMC
Allen B, Lippner G, Chen YT, Fotouhi B, Momeni N, Yau ST, et al.. Evolutionary dynamics on any population structure. Nature. 2017;544(76497649):227–230. doi: 10.1038/nature21723 PubMed DOI
Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 2004;428(69836983):643–646. doi: 10.1038/nature02360 PubMed DOI
Nakamaru M, Matsuda H, Iwasa Y. The Evolution of Cooperation in a Lattice-Structured Population. Journal of Theoretical Biology. 1997;184(1):65–81. doi: 10.1006/jtbi.1996.0243 PubMed DOI
Nowak MA, May RM. Evolutionary games and spatial chaos. Nature. 1992;359(63986398):826–829. doi: 10.1038/359826a0 DOI
Ohtsuki H, Hauert C, Lieberman E, Nowak MA. A simple rule for the evolution of cooperation on graphs and social networks. Nature. 2006;441(70927092):502–505. doi: 10.1038/nature04605 PubMed DOI PMC
Grenfell BT, Bjørnstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. 2001;414(68656865):716–723. doi: 10.1038/414716a PubMed DOI
Lloyd AL, May RM. Spatial Heterogeneity in Epidemic Models. Journal of Theoretical Biology. 1996;179(1):1–11. doi: 10.1006/jtbi.1996.0042 PubMed DOI
May RM, Lloyd AL. Infection dynamics on scale-free networks. Physical Review E. 2001;64(6):066112. doi: 10.1103/PhysRevE.64.066112 PubMed DOI
May RM, Nowak MA. Superinfection, Metapopulation Dynamics, and the Evolution of Diversity. Journal of Theoretical Biology. 1994;170(1):95–114. doi: 10.1006/jtbi.1994.1171 PubMed DOI
Noble R, Burri D, Le Sueur C, Lemant J, Viossat Y, Kather JN, et al.. Spatial structure governs the mode of tumour evolution. Nature Ecology & Evolution. 2022;6(22):207–217. doi: 10.1038/s41559-021-01615-9 PubMed DOI PMC
Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature. 2015;525(75687568):261–264. doi: 10.1038/nature14971 PubMed DOI PMC
Barton NH. The dynamics of hybrid zones. Heredity. 1979;43(33):341–359. doi: 10.1038/hdy.1979.87 DOI
Mitchell JC. Social Networks. Annual Review of Anthropology. 1974;3(1):279–299. doi: 10.1146/annurev.an.03.100174.001431 DOI
Lieberman E, Hauert C, Nowak MA. Evolutionary dynamics on graphs. Nature. 2005;433(7023):312–316. doi: 10.1038/nature03204 PubMed DOI
Díaz J, Mitsche D. A survey of the modified Moran process and evolutionary graph theory. Computer Science Review. 2021;39:100347. doi: 10.1016/j.cosrev.2020.100347 DOI
Donnelly P, Welsh D. Finite particle systems and infection models. In: Mathematical Proceedings of the Cambridge Philosophical Society. vol. 94. Cambridge University Press; 1983. p. 167–182.
Chakraborty PP, Nemzer LR, Kassen R. Experimental evidence that network topology can accelerate the spread of beneficial mutations. Evolution Letters. 2023;7(6):447–456. doi: 10.1093/evlett/qrad047 PubMed DOI PMC
Hindersin L, Traulsen A. Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS computational biology. 2015;11(11):e1004437. doi: 10.1371/journal.pcbi.1004437 PubMed DOI PMC
Broom M, Hadjichrysanthou C, Rychtář J. Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010;466(2117):1327–1346. doi: 10.1098/rspa.2009.0487 DOI
Broom M, Hadjichrysanthou C, Rychtář J, Stadler B. Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010;466(2121):2795–2798. doi: 10.1098/rspa.2010.0067 DOI
Monk T, van Schaik A. Wald’s martingale and the conditional distributions of absorption time in the Moran process. Proceedings of the Royal Society A. 2020;476(2241):20200135. doi: 10.1098/rspa.2020.0731 PubMed DOI PMC
Monk T, van Schaik A. Martingales and the characteristic functions of absorption time on bipartite graphs. Royal Society Open Science. 2021;8(10):210657. doi: 10.1098/rsos.210657 PubMed DOI PMC
Nowak MA, Michor F, Iwasa Y. The linear process of somatic evolution. Proceedings of the National Academy of Sciences. 2003;100(25):14966–14969. doi: 10.1073/pnas.2535419100 PubMed DOI PMC
Nowak MA. Evolutionary dynamics: exploring the equations of life. Harvard University Press; 2006.
Adlam B, Chatterjee K, Nowak MA. Amplifiers of selection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;471(2181):20150114. doi: 10.1098/rspa.2015.0114 DOI
Hadjichrysanthou C, Broom M, Rychtár J. Evolutionary games on star graphs under various updating rules. Dynamic Games and Applications. 2011;1(3):386–407. doi: 10.1007/s13235-011-0022-7 DOI
Monk T, Green P, Paulin M. Martingales and fixation probabilities of evolutionary graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;470(2165):20130730. doi: 10.1098/rspa.2013.0730 DOI
Chalub FA. Asymptotic expression for the fixation probability of a mutant in star graphs. arXiv preprint arXiv:14043944. 2014;.
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. Amplification on undirected population structures: comets beat stars. Scientific reports. 2017;7(1):82. doi: 10.1038/s41598-017-00107-w PubMed DOI PMC
Díaz J, Goldberg LA, Mertzios GB, Richerby D, Serna M, Spirakis PG. On the fixation probability of superstars. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013;469(2156):20130193. doi: 10.1098/rspa.2013.0193 DOI
Jamieson-Lane A, Hauert C. Fixation probabilities on superstars, revisited and revised. Journal of Theoretical Biology. 2015;382:44–56. doi: 10.1016/j.jtbi.2015.06.029 PubMed DOI
Galanis A, Göbel A, Goldberg LA, Lapinskas J, Richerby D. Amplifiers for the Moran process. Journal of the ACM (JACM). 2017;64(1):1–90. doi: 10.1145/3019609 DOI
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Population structure determines the tradeoff between fixation probability and fixation time. Communications biology. 2019;2(1):138. doi: 10.1038/s42003-019-0373-y PubMed DOI PMC
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Communications biology. 2018;1(1):71. doi: 10.1038/s42003-018-0078-7 PubMed DOI PMC
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Fast and strong amplifiers of natural selection. Nature Communications. 2021;12(1):4009. doi: 10.1038/s41467-021-24271-w PubMed DOI PMC
Sharma N, Traulsen A. Suppressors of fixation can increase average fitness beyond amplifiers of selection. Proceedings of the National Academy of Sciences. 2022;119(37):e2205424119. doi: 10.1073/pnas.2205424119 PubMed DOI PMC
Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT press; 2022.
Díaz J, Goldberg LA, Mertzios GB, Richerby D, Serna M, Spirakis PG. Approximating fixation probabilities in the generalized moran process. Algorithmica. 2014;69:78–91. doi: 10.1007/s00453-012-9722-7 DOI
Goldberg LA, Lapinskas J, Richerby D. Phase transitions of the Moran process and algorithmic consequences. Random Structures & Algorithms. 2020;56(3):597–647. doi: 10.1002/rsa.20890 DOI
Díaz J, Goldberg LA, Richerby D, Serna M. Absorption time of the Moran process. Random Structures & Algorithms. 2016;49(1):137–159. doi: 10.1002/rsa.20617 DOI
Ibsen-Jensen R, Chatterjee K, Nowak MA. Computational complexity of ecological and evolutionary spatial dynamics. Proceedings of the National Academy of Sciences. 2015;112(51):15636–15641. doi: 10.1073/pnas.1511366112 PubMed DOI PMC
Altrock PM, Gokhale CS, Traulsen A. Stochastic slowdown in evolutionary processes. Physical Review E. 2010;82(1):011925. doi: 10.1103/PhysRevE.82.011925 PubMed DOI
Maciejewski W. Reproductive value in graph-structured populations. Journal of Theoretical Biology. 2014;340:285–293. doi: 10.1016/j.jtbi.2013.09.032 PubMed DOI
Durocher L, Karras P, Pavlogiannis A, Tkadlec J. Invasion dynamics in the biased voter process. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence; 2022. p. 265–271.
Monk T. Martingales and the fixation probability of high-dimensional evolutionary graphs. Journal of theoretical biology. 2018;451:10–18. doi: 10.1016/j.jtbi.2018.04.039 PubMed DOI
Monk T, van Schaik A. Martingales and the fixation time of evolutionary graphs with arbitrary dimensionality. Royal Society Open Science. 2022;9(5):220011. doi: 10.1098/rsos.220011 PubMed DOI PMC
Allen B, Sample C, Jencks R, Withers J, Steinhagen P, Brizuela L, et al.. Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs. PLoS computational biology. 2020;16(1):e1007529. doi: 10.1371/journal.pcbi.1007529 PubMed DOI PMC
McKay BD, Piperno A. Practical graph isomorphism, II. Journal of symbolic computation. 2014;60:94–112. doi: 10.1016/j.jsc.2013.09.003 DOI
Möller M, Hindersin L, Traulsen A. Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time. Communications biology. 2019;2(1):137. doi: 10.1038/s42003-019-0374-x PubMed DOI PMC
Goldberg LA, Lapinskas J, Lengler J, Meier F, Panagiotou K, Pfister P. Asymptotically optimal amplifiers for the Moran process. Theoretical Computer Science. 2019;758:73–93. doi: 10.1016/j.tcs.2018.08.005 DOI
Downey RG, Fellows MR. Parameterized complexity. Springer Science & Business Media; 2012.
Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, et al.. Parameterized algorithms. vol. 4. Springer; 2015.
Levene H. Genetic equilibrium when more than one ecological niche is available. The American Naturalist. 1953;87(836):331–333. doi: 10.1086/281792 DOI
Bulmer M. Multiple niche polymorphism. The American Naturalist. 1972;106(948):254–257. doi: 10.1086/282765 DOI
Felsenstein J. The theoretical population genetics of variable selection and migration. Annual review of genetics. 1976;10(1):253–280. doi: 10.1146/annurev.ge.10.120176.001345 PubMed DOI
Yeaman S, Otto SP. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution. 2011;65(7):2123–2129. doi: 10.1111/j.1558-5646.2011.01277.x PubMed DOI
Svoboda J, Tkadlec J, Kaveh K, Chatterjee K. Coexistence times in the Moran process with environmental heterogeneity. Proceedings of the Royal Society A. 2023;479(2271):20220685. doi: 10.1098/rspa.2022.0685 DOI
Maciejewski W, Puleo GJ. Environmental evolutionary graph theory. Journal of theoretical biology. 2014;360:117–128. doi: 10.1016/j.jtbi.2014.06.040 PubMed DOI
Kaveh K, McAvoy A, Nowak MA. Environmental fitness heterogeneity in the Moran process. Royal Society open science. 2019;6(1):181661. doi: 10.1098/rsos.181661 PubMed DOI PMC
Brendborg J, Karras P, Pavlogiannis A, Rasmussen AU, Tkadlec J. Fixation maximization in the positional moran process. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36; 2022. p. 9304–9312.
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. Limits on amplifiers of natural selection under death-Birth updating. PLoS computational biology. 2020;16(1):e1007494. doi: 10.1371/journal.pcbi.1007494 PubMed DOI PMC
Svoboda J, Joshi S, Tkadlec J, Chatterjee K. Amplifiers of selection for the Moran process with both Birth-death and death-Birth updating. PLOS Computational Biology. 2024;20(3):e1012008. doi: 10.1371/journal.pcbi.1012008 PubMed DOI PMC
Sood V, Antal T, Redner S. Voter models on heterogeneous networks. Physical Review E. 2008;77(4):041121. doi: 10.1103/PhysRevE.77.041121 PubMed DOI PMC
Colonization times in Moran process on graphs