Unified Simulation Platform for Interference Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39036062
PubMed Central
PMC11258784
DOI
10.1021/acsphotonics.4c00621
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Interferometric scattering microscopy is a powerful technique that enables various applications, such as mass photometry and particle tracking. Here, we present a numerical toolbox to simulate images obtained in interferometric scattering, coherent bright-field, and dark-field microscopies. The scattered fields are calculated using a boundary element method, facilitating the simulation of arbitrary sample geometries and substrate layer structures. A fully vectorial model is used for simulating the imaging setup. We demonstrate excellent agreement between our simulations and experiments for different shapes of scatterers and excitation angles. Notably, for angles near the Brewster angle, we observe a contrast enhancement which may be beneficial for nanosensing applications. The software is available as a matlab toolbox.
Institute of Physics University of Graz Universitätsplatz 5 8010 Graz Austria
University of Vienna Faculty of Physics VCQ 1090 Vienna Austria
Zobrazit více v PubMed
Young G.; Hundt N.; Cole D.; Fineberg A.; Andrecka J.; Tyler A.; Olerinyova A.; Ansari A.; Marklund E. G.; Collier M. P.; et al. Quantitative mass imaging of single biological macromolecules. Science 2018, 360, 423–427. 10.1126/science.aar5839. PubMed DOI PMC
Taylor R. W.; Mahmoodabadi R. G.; Rauschenberger V.; Giessl A.; Schambony A.; Sandoghdar V. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 2019, 13, 480–487. 10.1038/s41566-019-0414-6. DOI
Huang Y.-F.; Zhuo G.-Y.; Chou C.-Y.; Lin C.-H.; Chang W.; Hsieh C.-L. Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells. ACS Nano 2017, 11, 2575–2585. 10.1021/acsnano.6b05601. PubMed DOI
Huang Y.-F.; Zhuo G.-Y.; Chou C.-Y.; Lin C. H.; Hsieh C.-L. Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. Nanoscale 2017, 9, 6567–6574. 10.1039/c7nr00604g. PubMed DOI
Dong J.; Maestre D.; Conrad-Billroth C.; Juffmann T. Fundamental bounds on the precision of iSCAT, COBRI and dark-field microscopy for 3D localization and mass photometry. J. Phys. D 2021, 54, 394002.10.1088/1361-6463/ac0f22. DOI
Gholami Mahmoodabadi R.; Taylor R. W.; Kaller M.; Spindler S.; Mazaheri M.; Kasaian K.; Sandoghdar V. Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization. Opt. Express 2020, 28, 25969.10.1364/oe.401374. PubMed DOI
Li N.; Canady T. D.; Huang Q.; Wang X.; Fried G. A.; Cunningham B. T. Photonic resonator interferometric scattering microscopy. Nat. Commun. 2021, 12, 1744.10.1038/s41467-021-21999-3. PubMed DOI PMC
Lin S.; He Y.; Feng D.; Piliarik M.; Chen X.-W. Optical Fingerprint of Flat Substrate Surface and Marker-Free Lateral Displacement Detection with Angstrom-Level Precision. Phys. Rev. Lett. 2022, 129, 213201.10.1103/PhysRevLett.129.213201. PubMed DOI
Shi Z.; Huang J.; Huang X.; Huang Y.; Wu L.; Li Q. Resonant scattering enhanced interferometric scattering microscopy. Nanoscale 2020, 12, 7969–7975. 10.1039/C9NR10391K. PubMed DOI
He Y.; Lin S.; Marc Louis Robert H.; Li H.; Zhang P.; Piliarik M.; Chen X.-W. Multiscale modeling and analysis for high-fidelity interferometric scattering microscopy. J. Phys. D 2021, 54, 274002.10.1088/1361-6463/abf70d. DOI
Chew W. C.Waves and Fields in Inhomogeneous Media; IEEE Press: Picsatoway, 1995.
Hohenester U.Nano and Quantum Optics; Springer: Cham, Switzerland, 2020.
Hohenester U.; Reichelt N.; Unger G. Nanophotonic resonance modes with the nanobem toolbox. Comput. Phys. Commun. 2022, 276, 108337.10.1016/j.cpc.2022.108337. DOI
Hohenester U. Nanophotonic resonators in stratified media with the nanobem toolbox. Comput. Phys. Commun. 2024, 294, 108949.10.1016/j.cpc.2023.108949. DOI
Richards B.; Wolf E. Electromagnetic simulation in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. London, Ser. A 1959, 253, 358.10.1098/rspa.1959.0200. DOI
Novotny L.; Hecht B.. Principles of Nano-Optics; Cambridge University Press: Cambridge, 2006.
Stratton J. A.; Chu L. J. Diffraction Theory of Electromagnetic Waves. Phys. Rev. 1939, 56, 99–107. 10.1103/PhysRev.56.99. DOI
Khadir S.; Chaumet P. C.; Baffou G.; Sentenac A. Quiantitative model of the image of a radiating dipole through a microscope. J. Opt. Soc. Am. 2019, 36, 478.10.1364/JOSAA.36.000478. PubMed DOI
Hecht E.Optics; Addison-Wesley, Reading, 1998.
Chew W. C.; Xiong J. L.; Saville M. A. A Matrix-Friendly Formulation of Layered Medium Green’s Function. IEEE Antennas Wireless Propagt. Lett. 2006, 5, 490–494. 10.1109/LAWP.2006.886306. DOI
Chew W. C.; Tong M. S.; Hu B.. Integral Equation Methods for Electromagnetic and Elastic Waves; Morgan and Claypool, 2009.
Johnson P. B.; Christy R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. 10.1103/PhysRevB.6.4370. DOI
Schuller J. A.; Barnard E. S.; Cai W.; Jun Y. C.; White J. S.; Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. 10.1038/nmat2630. PubMed DOI
Liebel M.; Hugall J. T.; van Hulst N. F. Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins. Nano Lett. 2017, 17, 1277–1281. 10.1021/acs.nanolett.6b05040. PubMed DOI
Cole D.; Young G.; Weigel A.; Sebesta A.; Kukura P. Label-Free Single-Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering Microscopy. ACS Photonics 2017, 4, 211–216. 10.1021/acsphotonics.6b00912. PubMed DOI PMC
Cheng C.-Y.; Liao Y.-H.; Hsieh C.-L. High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. Nanoscale 2019, 11, 568–577. 10.1039/C8NR06789A. PubMed DOI
Buffa A.; Hiptmair R.; Petersdorff T. v.; Schwab C. Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains. Numer. Math. 2003, 95, 459–485. 10.1007/s00211-002-0407-z. DOI