MRI contrast agents and retention in the brain: review of contemporary knowledge and recommendations to the future
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV18-04-00457
Ministerstvo Zdravotnictví Ceské Republiky
MH CZ - DRO (NHH, 00023884)
Nemocnice Na Homolce
PubMed
39060665
PubMed Central
PMC11282029
DOI
10.1186/s13244-024-01763-z
PII: 10.1186/s13244-024-01763-z
Knihovny.cz E-zdroje
- Klíčová slova
- Ferritin, Gadolinium, Gadolinium retention, MRI contrast agents, Relaxivity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gadolinium-based contrast agents (GBCA) were introduced with high expectations for favorable efficacy, low nephrotoxicity, and minimal allergic-like reactions. Nephrogenic systemic fibrosis and proven gadolinium retention in the body including the brain has led to the restriction of linear GBCAs and a more prudent approach regarding GBCA indication and dosing. In this review, we present the chemical, physical, and clinical aspects of this topic and aim to provide an equanimous and comprehensive summary of contemporary knowledge with a perspective of the future. In the first part of the review, we present various elements and compounds that may serve as MRI contrast agents. Several GBCAs are further discussed with consideration of their relaxivity, chelate structure, and stability. Gadolinium retention in the brain is explored including correlation with the presence of metalloprotein ferritin in the same regions where visible hyperintensity on unenhanced T1-weighted imaging occurs. Proven interaction between ferritin and gadolinium released from GBCAs is introduced and discussed, as well as the interaction of other elements with ferritin; and manganese in patients with impaired liver function or calcium in Fahr disease. We further present the concept that only high-molecular-weight forms of gadolinium can likely visibly change signal intensity on unenhanced T1-weighted imaging. Clinical data are also presented with respect to potential neurological manifestations originating from the deep-brain nuclei. Finally, new contrast agents with relatively high relaxivity and stability are introduced. CRITICAL RELEVANCE STATEMENT: GBCA may accumulate in the brain, especially in ferritin-rich areas; however, no adverse neurological manifestations have been detected in relation to gadolinium retention. KEY POINTS: Gadolinium currently serves as the basis for MRI contrast agents used clinically. No adverse neurological manifestations have been detected in relation to gadolinium retention. Future contrast agents must advance chelate stability and relativity, facilitating lower doses.
Zobrazit více v PubMed
Sansare K, Khanna V, Karjodkar F (2011) Early victims of X-rays: a tribute and current perception. Dentomaxillofac Radiol 40:123–125. 10.1259/dmfr/73488299 10.1259/dmfr/73488299 PubMed DOI PMC
Brown P (1995) American martyrs to radiology. Clarence Madison Dally (1865–1904). 1936. AJR Am J Roentgenol 164:237–239. 10.2214/ajr.164.1.7998548 10.2214/ajr.164.1.7998548 PubMed DOI
Wiest PW, Locken JA, Heintz PH, Mettler FA (2002) CT scanning: a major source of radiation exposure. Semin Ultrasound CT MR 23:402–410. 10.1016/S0887-2171(02)90011-9 10.1016/S0887-2171(02)90011-9 PubMed DOI
Mazrani W, McHugh K, Marsden PJ (2007) The radiation burden of radiological investigations. Arch Dis Child 92:1127–1131. 10.1136/adc.2006.101782 10.1136/adc.2006.101782 PubMed DOI PMC
Food and Drug Administration (FDA) (2019) Magnetic resonance imaging: benefits and risks. Available online via. https://www.fda.gov/radiation-emitting-products/mri-magnetic-resonance-imaging/benefits-and-risks
Shellock FG, Spinazzi A(2008) MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol 191:1129–1139. 10.2214/AJR.08.1038.1 10.2214/AJR.08.1038.1 PubMed DOI
Idee JM, Fretellier N, Robic C, Corot C (2014) The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: a critical update. Crit Rev Toxicol 44:895–913. 10.3109/10408444.2014.955568 10.3109/10408444.2014.955568 PubMed DOI
Daftari Besheli L, Aran S, Shaqdan K et al (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69:661–668. 10.1016/j.crad.2014.01.003 10.1016/j.crad.2014.01.003 PubMed DOI
Davenport MS (2019) Virtual elimination of nephrogenic systemic fibrosis: a medical success story with a small asterisk. Radiology 292:387–389. 10.1148/radiol.2019191158 10.1148/radiol.2019191158 PubMed DOI
McDonald RJ, Levine D, Weinreb J et al (2018) Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289:517–534. 10.1148/radiol.2018181151 10.1148/radiol.2018181151 PubMed DOI PMC
Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841. 10.1148/radiol.13131669 10.1148/radiol.13131669 PubMed DOI
Janardhan V, Suri S, Bakshi R (2007) Multiple sclerosis: hyperintense lesions in the brain on nonenhanced T1-weighted MR images evidenced as areas of T1 shortening. Radiology 244:823–831. 10.1148/radiol.2443051171 10.1148/radiol.2443051171 PubMed DOI
Kasahara S, Miki Y, Kanagaki M et al (2011) Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 258:222–228. 10.1148/radiol.10100508 10.1148/radiol.10100508 PubMed DOI
Kanda T, Matsuda M, Oba H et al (2015) Gadolinium deposition after contrast-enhanced MR imaging. Radiology 277:924–925. 10.1148/radiol.2015150697 10.1148/radiol.2015150697 PubMed DOI
Adin ME, Kleinberg L, Vaidya D et al (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJR Am J Neuroradiol 36:1859–1865. 10.3174/ajnr.A437810.3174/ajnr.A4378 PubMed DOI PMC
Ramalho J, Castillo M, AlObaidy M et al (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276:836–844. 10.1148/radiol.2015150872 10.1148/radiol.2015150872 PubMed DOI
Radbruch A, Weberlink LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791. 10.1148/radiol.2015150337 10.1148/radiol.2015150337 PubMed DOI
McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782. 10.1148/radiol.15150025 10.1148/radiol.15150025 PubMed DOI
Quattrocchi CC, van der Molen AJ (2017) Gadolinium retention in the body and brain: Is it time for an international joint research effort? Radiology 282:12–16. 10.1148/radiol.2016161626 10.1148/radiol.2016161626 PubMed DOI
Gadolinium-containing contrast agents (2018) In: European Medicines Agency (EMEA). Available online via. https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents.
Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30:1259–1267. 10.1002/jmri.21969 10.1002/jmri.21969 PubMed DOI PMC
Gonano CA, Zich RE, Mussetta M (2015) Definition for polarization P and magnetization M fully consistent with Maxwell’s equations. Prog Electromagn Res B 64:83–101. 10.2528/PIERB1510060610.2528/PIERB15100606 DOI
Nitz WR, Reimer P (1999) Contrast mechanisms in MR imaging. Eur Radiol 9:1032–1046. 10.1007/s003300050789 10.1007/s003300050789 PubMed DOI
Ercan N, Gultekin S, Celik H et al (2004) Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol 25:761–765 PubMed PMC
Vymazal J, Bulte JW, Frank JA et al (1993) Frequency dependence of MR relaxation times. I. Paramagnetic ions. J Magn Reson Imaging 3:637–640 10.1002/jmri.1880030413 PubMed DOI
Kellar KE, Fossheim SL, Koenig SH (1998) Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes. Invest Radiol 33:835–840. 10.1097/00004424-199811000-00007 10.1097/00004424-199811000-00007 PubMed DOI
Roberts TPL, Kucharczyk J, Cox I et al (1994) Sprodiamide-injection-enhanced magnetic resonance imaging of cerebral perfusion: phase I clinical trial results. Invest Radiol 29:S24 10.1097/00004424-199406001-00009 PubMed DOI
Rocklage SM, Watson AD (1993) Chelates of gadolinium and dysprosium as contrast agents for MR imaging. J Magn Reson Imaging 3:167–178. 10.1002/jmri.1880030129 10.1002/jmri.1880030129 PubMed DOI
Pan D, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67:8431–8444. 10.1016/j.tet.2011.07.076 10.1016/j.tet.2011.07.076 PubMed DOI PMC
Marti-Bonmati L, Lonjedo E, Mathieu D et al (1997) Tumoural portal vein thrombosis. Enhancement with MnDPDP. Acta Radiol 38:655–659. 10.1080/02841859709172397 10.1080/02841859709172397 PubMed DOI
Teslascan (2024) In: Questions and answers in MRI. AD Elster, ELSTER LLC. Available online via. http://mriquestions.com/mn-agents-teslascan.html
Storey P, Danias PG, Post M et al (2003) Preliminary evaluation of EVP 1001-1: a new cardiac-specific magnetic resonance contrast agent with kinetics suitable for steady-state imaging of the ischemic heart. Invest Radiol 38:642–652. 10.1097/01.rli.0000077057.88108.3f 10.1097/01.rli.0000077057.88108.3f PubMed DOI
Gianolio E, Bäckström S, Petoral RM et al (2019) Characterization of a manganese-containing nanoparticle as an MRI contrast agent. Eur J Inorg Chem. 10.1002/ejic.20180147210.1002/ejic.201801472 DOI
Zhou I, Gale E, Rotile N, Caravan P (2020) Noninvasive quantification of whole-body distribution and elimination of [52Mn] Mn-PyC3A using simultaneous PET/MRI. J Nucl Med 61:1–1 PubMed
Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 10:1727–1741. 10.2147/IJN.S7650110.2147/IJN.S76501 PubMed DOI PMC
Bulte JW, Vymazal J, Brooks RA et al (1993) Frequency dependence of MR relaxation times. II. Iron oxides. J Magn Reson Imaging 3:641–648. 10.1002/jmri.1880030414 10.1002/jmri.1880030414 PubMed DOI
Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276. 10.1007/s00330-002-1721-7 10.1007/s00330-002-1721-7 PubMed DOI
Jeon M, Halbert MV, Stephen ZR, Zhang M (2021) Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater 33:e1906539. 10.1002/adma.201906539 10.1002/adma.201906539 PubMed DOI PMC
Huang Y, Hsu JC, Koo H, Cormode DP (2022) Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 12:796–816. 10.7150/thno.67375 10.7150/thno.67375 PubMed DOI PMC
Kreis F, Wright AJ, Somai V et al (2020) Increasing the sensitivity of hyperpolarized [15N2]urea detection by serial transfer of polarization to spin-coupled protons. Magn Reson Med 84:1844–1856. 10.1002/mrm.28241 10.1002/mrm.28241 PubMed DOI PMC
Pinon AC, Capozzi A, Ardenkjær-Larsen JH (2020) Hyperpolarized water through dissolution dynamic nuclear polarization with UV-generated radicals. Commun Chem 3:1–9. 10.1038/s42004-020-0301-6 10.1038/s42004-020-0301-6 PubMed DOI PMC
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. 10.1021/cr980440x 10.1021/cr980440x PubMed DOI
Pyykkö P (2015) Magically magnetic gadolinium. Nat Chem 7:680–680. 10.1038/nchem.2287 10.1038/nchem.2287 PubMed DOI
Bottrill M, Kwok L, Long NJ (2006) Lanthanides in magnetic resonance imaging. Chem Soc Rev 35:557–571. 10.1039/b516376p 10.1039/b516376p PubMed DOI
Birka M, Wehe CA, Hachmöller O et al (2016) Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. J Chromatogr A 1440:105–111. 10.1016/j.chroma.2016.02.050 10.1016/j.chroma.2016.02.050 PubMed DOI
Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624. 10.2214/ajr.142.3.619 10.2214/ajr.142.3.619 PubMed DOI
Bellin M-F, Van Der Molen AJ (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167. 10.1016/j.ejrad.2008.01.023 10.1016/j.ejrad.2008.01.023 PubMed DOI
Prybylski JP, Jay M (2017) The impact of excess ligand on the retention of nonionic, linear gadolinium-based contrast agents in patients with various levels of renal dysfunction: a review and simulation analysis. Adv Chronic Kidney Dis 24:176–182. 10.1053/j.ackd.2017.03.002 10.1053/j.ackd.2017.03.002 PubMed DOI PMC
Runge VM (2018) Dechelation (transmetalation): consequences and safety concerns with the linear gadolinium-based contrast agents, in view of recent health care rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Invest Radiol 53:571–578. 10.1097/RLI.0000000000000507 10.1097/RLI.0000000000000507 PubMed DOI
Cowling T, Frey N (2019) Macrocyclic and linear gadolinium based contrast agents for adults undergoing magnetic resonance imaging: a review of safety. Canadian Agency for Drugs and Technologies in Health, Ottawa PubMed
Giesel FL, von Tengg-Kobligk H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (r1 and r2) of magnetic resonance contrast agents. Invest Radiol 41:222–228. 10.1097/01.rli.0000192421.81037.d5 10.1097/01.rli.0000192421.81037.d5 PubMed DOI
Jacques V, Dumas S, Sun W-C et al (2010) High relaxivity MRI contrast agents part 2: optimization of inner- and second-sphere relaxivity. Invest Radiol 45:613–624. 10.1097/RLI.0b013e3181ee6a49 10.1097/RLI.0b013e3181ee6a49 PubMed DOI PMC
Nandwana SB, Moreno CC, Osipow MT et al (2015) Gadobenate dimeglumine administration and nephrogenic systemic fibrosis: Is there a real risk in patients with impaired renal function? Radiology 276:741–747. 10.1148/radiol.2015142423 10.1148/radiol.2015142423 PubMed DOI
Soulez G, Bloomgarden DC, Rofsky NM et al (2015) Prospective cohort study of nephrogenic systemic fibrosis in patients with stage 3–5 chronic kidney disease undergoing MRI with injected gadobenate dimeglumine or gadoteridol. AJR Am J Roentgenol 205:469–478. 10.2214/AJR.14.14268 10.2214/AJR.14.14268 PubMed DOI
Starekova J, Bruce RJ, Sadowski EA, Reeder SB (2020) No cases of nephrogenic systemic fibrosis after administration of gadoxetic acid. Radiology 297:556–562. 10.1148/radiol.2020200788 10.1148/radiol.2020200788 PubMed DOI
Gallivan JP, Dougherty DA (1999) Cation–π interactions in structural biology. Proc Natl Acad Sci U S A 96:9459–9464. 10.1073/pnas.96.17.9459 10.1073/pnas.96.17.9459 PubMed DOI PMC
Schneider G, Pasowicz M, Vymazal J et al (2010) Gadobenate dimeglumine and gadofosveset trisodium for MR angiography of the renal arteries: multicenter intraindividual crossover comparison. AJR Am J Roentgenol 195:476–485. 10.2214/AJR.09.3868 10.2214/AJR.09.3868 PubMed DOI
Pintaske J, Martirosian P, Graf H et al (2006) Relaxivity of gadopentetate dimeglumine (magnevist), gadobutrol (gadovist), and gadobenate dimeglumine (multihance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–221. 10.1097/01.rli.0000197668.44926.f7 10.1097/01.rli.0000197668.44926.f7 PubMed DOI
Blockley NP, Jiang L, Gardener AG et al (2008) Field strength dependence of R1 and R2* relaxivities of human whole blood to ProHance, Vasovist, and deoxyhemoglobin. Magn Reson Med 60:1313–1320. 10.1002/mrm.21792 10.1002/mrm.21792 PubMed DOI
Shen Y, Goerner FL, Snyder C et al (2015) T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest Radiol 50:330–338. 10.1097/RLI.0000000000000132 10.1097/RLI.0000000000000132 PubMed DOI
Neburkova J, Rulseh AM, Chang SLY et al (2020) Formation of gadolinium–ferritin from clinical magnetic resonance contrast agents. Nanoscale Adv. 10.1039/C9NA00567F PubMed PMC
Seltzer SE, Adams DF, Davis MA et al (1981) Hepatic contrast agents for computed tomography: high atomic number particulate material. J Comput Assist Tomogr 5:370–374. 10.1097/00004728-198106000-00011 10.1097/00004728-198106000-00011 PubMed DOI
Karak T, Paul RK, Das DK, Boruah RK (2016) Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface. Environ Monit Assess 188:670. 10.1007/s10661-016-5685-5 10.1007/s10661-016-5685-5 PubMed DOI
Brooks RA, Vymazal J, Bulte JW et al (1995) Comparison of T2 relaxation in blood, brain, and ferritin. J Magn Reson Imaging 5:446–450. 10.1002/jmri.1880050414 10.1002/jmri.1880050414 PubMed DOI
Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51. 10.1111/j.1471-4159.1958.tb12607.x 10.1111/j.1471-4159.1958.tb12607.x PubMed DOI
Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G (1992) T1 and T2 of ferritin at different field strengths: effect on MRI. Magnetic Resonance in Medicine. Available via Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.1910270218. Accessed 2 May 2023 PubMed DOI
Vymazal J, Brooks RA, Patronas N et al (1995) Magnetic resonance imaging of brain iron in health and disease. J Neurol Sci 134:19–26. 10.1016/0022-510x(95)00204-f 10.1016/0022-510x(95)00204-f PubMed DOI
Zhang L (2011) Interaction of ferritin with transition metal ions and chelates. Dissertation, Publicly Accessible Penn Dissertations
Ghio AJ, Soukup JM, Dailey LA et al (2011) Gadolinium exposure disrupts iron homeostasis in cultured cells. J Biol Inorg Chem 16:567–575. 10.1007/s00775-011-0757-z 10.1007/s00775-011-0757-z PubMed DOI
McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554. 10.1148/radiol.2017161595 10.1148/radiol.2017161595 PubMed DOI
Reinert A, Morawski M, Seeger J et al (2019) Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci 20:25. 10.1186/s12868-019-0507-7 10.1186/s12868-019-0507-7 PubMed DOI PMC
Frenzel T, Apte C, Jost G et al (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol 52:396. 10.1097/RLI.0000000000000352 10.1097/RLI.0000000000000352 PubMed DOI PMC
Persson N, Wu J, Zhang Q et al (2015) Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage 122:385–398. 10.1016/j.neuroimage.2015.07.050 10.1016/j.neuroimage.2015.07.050 PubMed DOI PMC
Minaeva O, Hua N, Franz ES et al (2020) Nonhomogeneous gadolinium retention in the cerebral cortex after intravenous administration of gadolinium-based contrast agent in rats and humans. Radiology 294:377–385. 10.1148/radiol.2019190461 10.1148/radiol.2019190461 PubMed DOI PMC
Kartamihardja AAP, Ariyani W, Hanaoka H et al (2021) The role of ferrous ion in the effect of the gadolinium-based contrast agents (GBCA) on the purkinje cells arborization: an in vitro study. Diagnostics 11:2310. 10.3390/diagnostics11122310 10.3390/diagnostics11122310 PubMed DOI PMC
Vymazal J, Babis M, Brooks RA et al (1996) T1 and T2 alterations in the brains of patients with hepatic cirrhosis. AJNR Am J Neuroradiol 17:333–336 PubMed PMC
Herynek V, Babis M, Trunecka P et al (2001) Chronic liver disease: relaxometry in the brain after liver transplantation. MAGMA 12:10–15 10.1007/BF02678268 PubMed DOI
MacKenzie EL, Tsuji Y (2008) Elevated intracellular calcium increases ferritin H expression through an NFAT-independent posttranscriptional mechanism involving mRNA stabilization. Biochem J 411:107–113. 10.1042/BJ20071544 10.1042/BJ20071544 PubMed DOI PMC
Merello M, Starkstein S, Nouzeilles M et al (2001) Bilateral pallidotomy for treatment of Parkinson’s disease induced corticobulbar syndrome and psychic akinesia avoidable by globus pallidus lesion combined with contralateral stimulation. J Neurol Neurosurg Psychiatry 71:611–614. 10.1136/jnnp.71.5.611 10.1136/jnnp.71.5.611 PubMed DOI PMC
O’Halloran CJ, Kinsella GJ, Storey E (2012) The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol 34:35–56. 10.1080/13803395.2011.614599 10.1080/13803395.2011.614599 PubMed DOI
Welk B, McArthur E, Morrow SA et al (2016) Association between gadolinium contrast exposure and the risk of Parkinsonism. JAMA 316:96–98. 10.1001/jama.2016.8096 10.1001/jama.2016.8096 PubMed DOI
Vymazal J, Krámská L, Brožová H et al (2019) Does serial administration of gadolinium-based contrast agents affect patient neurological and neuropsychological status? Fourteen-year follow-up of patients receiving more than fifty contrast administrations. J Magn Reson Imaging 51:1912–1913 10.1002/jmri.26948 PubMed PMC
Smith APL, Marino M, Roberts J et al (2016) Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study. Radiology 282:743–751. 10.1148/radiol.2016160905 10.1148/radiol.2016160905 PubMed DOI
Rogowska J, Olkowska E, Ratajczyk W, Wolska L (2018) Gadolinium as a new emerging contaminant of aquatic environments. Environ Toxicol Chem 37:1523–1534. 10.1002/etc.4116 10.1002/etc.4116 PubMed DOI
Loevner LA, Kolumban B, Hutóczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced mri of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol. 10.1097/RLI.0000000000000944 PubMed PMC
Robic C, Port M, Rousseaux O et al (2019) Physicochemical and pharmacokinetic profiles of gadopiclenol. Invest Radiol 54:475–484. 10.1097/RLI.0000000000000563 10.1097/RLI.0000000000000563 PubMed DOI PMC
Lohrke J, Berger M, Frenzel T et al (2022) Preclinical profile of gadoquatrane: a novel tetrameric, macrocyclic high relaxivity gadolinium-based contrast agent. Invest Radiol 57:629–638. 10.1097/RLI.0000000000000889 10.1097/RLI.0000000000000889 PubMed DOI PMC
Shuvaev S, Akam E, Caravan P (2021) Molecular MR contrast agents. Invest Radiol 56:20–34. 10.1097/RLI.0000000000000731 10.1097/RLI.0000000000000731 PubMed DOI PMC