Advancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with -OH Moieties
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39069659
PubMed Central
PMC11307250
DOI
10.1021/acs.analchem.4c01811
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The retention behavior in supercritical fluid chromatography and its stability over time are still unsatisfactorily explained phenomena despite many important contributions in recent years, especially focusing on linear solvation energy relationship modeling. We studied polar stationary phases with predominant -OH functionalities, i.e., silica, hybrid silica, and diol columns, and their retention behavior over time. We correlated molecular descriptors of analytes with their retention using three organic modifiers of the CO2-based mobile phase. The differences in retention behavior caused by using additives, namely, 10 mmol/L NH3 and 2% H2O in methanol, were described in correlation to analyte properties and compared with the CO2/methanol mobile phase. The structure of >100 molecules included in this study was optimized by semiempirical AM1 quantum mechanical calculations and subsequently described by 226 molecular descriptors including topological, constitutional, hybrid, electronic, and geometric descriptors. An artificial neural networks simulator with deep learning toolbox was trained on this extensive set of experimental data and subsequently used to determine key molecular descriptors affecting the retention by the highest extent. After comprehensive statistical analysis of the experimental data collected during one year of column use, the retention on different stationary phases was fundamentally described. The changes in the retention behavior during one year of column use were described and their explanation with a proposed interpretation of changes on the stationary phase surface was suggested. The effect of the regeneration procedure on the retention was also evaluated. This fundamental understanding of interactions responsible for retention in SFC can be used for the evidence-based selection of stationary phases suitable for the separation of particular analytes based on their specific physicochemical properties.
See more in PubMed
Si-Hung L.; Bamba T. Current state and future perspectives of supercritical fluid chromatography. TrAC, Trends Anal. Chem. 2022, 149, 116550.10.1016/j.trac.2022.116550. DOI
Geller A. Supercritical fluid chromatography: new perspectives for pharmaceutical quality control. J. Pharm. Drug Regul. Aff. 2022, 11, 295.
Dispas A.; Marini R.; Desfontaine V.; Veuthey J.-L.; Kotoni D.; Losacco L. G.; Clarke A.; Muscat Galea C.; Mangelings D.; Jocher B. M.; et al. First inter-laboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities. J. Pharm. Biomed. Anal. 2018, 161, 414–424. 10.1016/j.jpba.2018.08.042. PubMed DOI
Dispas A.; Clarke A.; Grand-Guillaume Perrenoud A.; Losacco L. G.; Veuthey J.-L.; Gros Q.; Molineau J.; Noireau A.; West C.; Salafia F.; et al. Interlaboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities: evaluation of multi-systems reproducibility. J. Pharm. Biomed. Anal. 2021, 203, 114206.10.1016/j.jpba.2021.114206. PubMed DOI
Losacco G. L.; Rentsch M.; Plachká K.; Monteau F.; Bichon E.; Bizec B. L.; Nováková L.; Nicoli R.; Kuuranne T.; Veuthey J.-L.; Guillarme D. Ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry for antidoping analyses: assessment of the inter-laboratory reproducibility with urine samples. Anal. Sci. Adv. 2021, 2, 68–75. 10.1002/ansa.202000131. PubMed DOI PMC
Fairchild J. N.; Brousmiche D. W.; Hill J. F.; Morris M. F.; Boissel C. A.; Wyndham K. D. Chromatographic evidence of silyl ether formation (SEF) in supercritical fluid chromatography. Anal. Chem. 2015, 87, 1735–1742. 10.1021/ac5035709. PubMed DOI
Plachká K.; Střítecký J.; Svec F.; Nováková L. The effect of column history in supercritical fluid chromatography: practical implications. J. Chromatogr. A 2021, 1651, 462272.10.1016/j.chroma.2021.462272. PubMed DOI
Nomura A.; Yamada J.; Tsunoda K.-i.; Fukushima K.; Nobuhara K. Silica-based inert packings for supercritical fluid chromatography. Anal. Sci. 1989, 5, 335–338. 10.2116/analsci.5.335. DOI
Plachká K.; Pilařová V.; Horáček O.; Gazárková T.; Vlčková H. K.; Kučera R.; Nováková L. Columns in analytical-scale supercritical fluid chromatography: from traditional to unconventional chemistries. J. Sep. Sci. 2023, 46, 2300431.10.1002/jssc.202300431. PubMed DOI
Nováková L.; Grand-Guillaume Perrenoud A.; Francois I.; West C.; Lesellier E.; Guillarme D. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial. Anal. Chim. Acta 2014, 824, 18–35. 10.1016/j.aca.2014.03.034. PubMed DOI
West C.; Lesellier E.. Chapter 3—Selection of SFC stationary and mobile phases. In Separation Science and Technology, Hicks M.; Ferguson P., Eds.; Academic Press, 2022; Vol. 14; pp 49–71.
West C.; Lemasson E. Unravelling the effects of mobile phase additives in supercritical fluid chromatography—part II: adsorption on the stationary phase. J. Chromatogr. A 2019, 1593, 135–146. 10.1016/j.chroma.2019.02.002. PubMed DOI
Poole C. F. Stationary phases for packed-column supercritical fluid chromatography. J. Chromatogr. A 2012, 1250, 157–171. 10.1016/j.chroma.2011.12.040. PubMed DOI
West C.; Lemasson E.; Bertin S.; Hennig P.; Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J. Chromatogr. A 2016, 1440, 212–228. 10.1016/j.chroma.2016.02.052. PubMed DOI
Neue U. D.; Phoebe C. H.; Tran K.; Cheng Y.-F.; Lu Z. Dependence of reversed-phase retention of ionizable analytes on pH, concentration of organic solvent and silanol activity. J. Chromatogr. A 2001, 925, 49–67. 10.1016/S0021-9673(01)01009-3. PubMed DOI
Pfeiffer-Laplaud M.; Costa D.; Tielens F.; Gaigeot M.-P.; Sulpizi M. Bimodal acidity at the amorphous silica/water interface. J. Phys. Chem. C 2015, 119, 27354–27362. 10.1021/acs.jpcc.5b02854. DOI
Méndez A.; Bosch E.; Rosés M.; Neue U. D. Comparison of the acidity of residual silanol groups in several liquid chromatography columns. J. Chromatogr. A 2003, 986, 33–44. 10.1016/S0021-9673(02)01899-X. PubMed DOI
Wyndham K.; Walter T.; Iraneta P.; Alden B.; Bouvier E.; Hudalla C.; Lawrence N.; Walsh D. Synthesis and applications of BEH particles in liquid chromatography. LCGC North Am. 2012, 30, 20–29.
Gros Q.; Molineau J.; Noireau A.; Duval J.; Bamba T.; Lesellier E.; West C. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J. Chromatogr. A 2021, 1639, 461923.10.1016/j.chroma.2021.461923. PubMed DOI
West C.; Melin J.; Ansouri H.; Mengue Metogo M. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: polarity and acidity of the mobile phase. J. Chromatogr. A 2017, 1492, 136–143. 10.1016/j.chroma.2017.02.066. PubMed DOI
Ovchinnikov D. V.; Ul’yanovskii N. V.; Kosyakov D. S.; Pokrovskiy O. I. Some aspects of additives effects on retention in supercritical fluid chromatography studied by linear free energy relationships method. J. Chromatogr. A 2022, 1665, 462820.10.1016/j.chroma.2022.462820. PubMed DOI
West C.; Lesellier E. Effects of mobile phase composition on retention and selectivity in achiral supercritical fluid chromatography. J. Chromatogr. A 2013, 1302, 152–162. 10.1016/j.chroma.2013.06.003. PubMed DOI
Waters . Care and Use Manual: Acquity UPC2 BEH, CSH, and HSS Columns; Waters, Ed..
Lafossas C.; Benoit-Marquié F.; Garrigues J. C. Analysis of the retention of tetracyclines on reversed-phase columns: chemometrics, design of experiments and quantitative structure-property relationship (QSPR) study for interpretation and optimization. Talanta 2019, 198, 550–559. 10.1016/j.talanta.2019.02.051. PubMed DOI
Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3–25. 10.1016/S0169-409X(96)00423-1. PubMed DOI
Si-Hung L.; Izumi Y.; Nakao M.; Takahashi M.; Bamba T. Investigation of supercritical fluid chromatography retention behaviors using quantitative structure-retention relationships. Anal. Chim. Acta 2022, 1197, 339463.10.1016/j.aca.2022.339463. PubMed DOI
Todeschini R.; Gramatica P.. New 3D molecular descriptors: the WHIM theory and QSAR applications. In 3D QSAR in Drug Design: Ligand-Protein Interactions and Molecular Similarity; Kubinyi H., Folkers G., Martin Y. C., Eds.; Springer Netherlands, 1998; pp 355–380.
Muteki K.; Morgado J. E.; Reid G. L.; Wang J.; Xue G.; Riley F. W.; Harwood J. W.; Fortin D. T.; Miller I. J. Quantitative structure retention relationship models in an analytical quality by design framework: simultaneously accounting for compound properties, mobile-phase conditions, and stationary-phase properties. Ind. Eng. Chem. Res. 2013, 52, 12269–12284. 10.1021/ie303459a. DOI
Antanasijević J.; Antanasijević D.; Pocajt V.; Trišović N.; Fodor-Csorba K. A QSPR study on the liquid crystallinity of five-ring bent-core molecules using decision trees, MARS and artificial neural networks. RSC Adv. 2016, 6, 18452–18464. 10.1039/C5RA20775D. DOI