• This record comes from PubMed

CMR Findings in COVID-19 Recovered Patients: A Review on Parametric Mapping, Feature-Tracking, and LGE

. 2022 Nov ; 23 (11) : 355. [epub] 20221021

Status PubMed-not-MEDLINE Language English Country Singapore Media electronic-ecollection

Document type Journal Article, Review

Links

PubMed 39076192
PubMed Central PMC11269062
DOI 10.31083/j.rcm2311355
PII: S1530-6550(22)00724-4
Knihovny.cz E-resources

On March 11, 2020, the World Health Organization raised the coronavirus disease 2019 (COVID-19) status to a pandemic level. The disease caused a global outbreak with devastating consequences, and a fair percentage of patients who have recovered from it continue experiencing persistent sequelae. Hence, identifying the medium and long-term effects of the COVID-19 disease is crucial for its future management. In particular, cardiac complications, from affected function to myocardial injuries, have been reported in these patients. Considering that cardiovascular magnetic resonance (CMR) imaging is the gold standard in diagnosing myocardial involvement and has more advantages than other medical imaging modalities, assessing the outcomes of patients who recovered from COVID-19 with CMR could prove beneficial. This review compiles common findings in CMR in patients from the general population who recovered from COVID-19. The CMR-based techniques comprised parametric mapping for analyzing myocardial composition, feature tracking for studying regional heart deformation, and late gadolinium enhancement for detecting compromised areas in the cardiac muscle. A total of 19 studies were included. The evidence suggests that it is more likely to find signs of myocardial injury in patients who recovered from COVID-19 than in healthy controls, including changes in T1 and T2 mapping relaxation times, affected strain, or the presence of late gadolinium enhancement (LGE) lesions. However, more than two years after the outbreak, there is still a lack of consensus about how these parameters may indicate cardiac involvement in patients who recovered from the disease, as limited and contradictory data is available.

See more in PubMed

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases . 2020;20:533–534. PubMed PMC

Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM. Pathologic features of COVID-19: A concise review. Pathology-Research and Practice . 2020;216:153097. PubMed PMC

Mondello C, Roccuzzo S, Malfa O, Sapienza D, Gualniera P, Ventura Spagnolo E, et al. Pathological findings in COVID-19 as a tool to define SARS-CoV-2 pathogenesis. A systematic review. Frontiers in Pharmacology . 2021;12:614586. PubMed PMC

Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine . 2021;31:100683. PubMed PMC

Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nature Medicine . 2022;28:583–590. PubMed PMC

Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sciences . 2020;253:117723. PubMed PMC

Jaiswal V, Sarfraz Z, Sarfraz A, Mukherjee D, Batra N, Hitawala G, et al. COVID-19 infection and myocarditis: A state-of-the-art systematic review. Journal of Primary Care & Community Health . 2021;12:21501327211056800. PubMed PMC

Sanchez Tijmes F, Thavendiranathan P, Udell JA, Seidman MA, Hanneman K. Cardiac MRI assessment of nonischemic myocardial inflammation: state of the art review and update on myocarditis associated with COVID-19 vaccination. Radiology: Cardiothoracic Imaging . 2021;3:e210252. PubMed PMC

Weckbach LT, Curta A, Bieber S, Kraechan A, Brado J, Hellmuth JC, et al. Myocardial inflammation and dysfunction in COVID-19-associated myocardial injury. Circulation: Cardiovascular Imaging . 2021;14:e012220. PubMed

Crudo VL, Ahmed AI, Cowan EL, Shah DJ, Al-Mallah MH, Malahfji M. Acute and Subclinical Myocardial Injury in COVID-19. Methodist DeBakey Cardiovascular Journal . 2021;17:22–30. PubMed PMC

Catapano F, Marchitelli L, Cundari G, Cilia F, Mancuso G, Pambianchi G, et al. Role of advanced imaging in COVID-19 cardiovascular complications. Insights into Imaging . 2021;12:28. PubMed PMC

Das JP, Yeh R, Schöder H. Clinical utility of perfusion (Q)-single-photon emission computed tomography (SPECT)/CT for diagnosing pulmonary embolus (PE) in COVID-19 patients with a moderate to high pre-test probability of PE. European Journal of Nuclear Medicine and Molecular Imaging . 2021;48:794–799. PubMed PMC

Cau R, Bassareo PP, Mannelli L, Suri JS, Saba L. Imaging in COVID-19-related myocardial injury. The International Journal of Cardiovascular Imaging . 2021;37:1349–1360. PubMed PMC

Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) Journal of Cardiovascular Magnetic Resonance . 2017;19:75. PubMed PMC

Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Failure Reviews . 2017;22:465–476. PubMed PMC

Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications. Circulation: Cardiovascular Imaging . 2016;9:e004077. PubMed

Nakamura M, Kido T, Hirai K, Tabo K, Tanabe Y, Kawaguchi N, et al. What is the mid-wall linear high intensity “lesion” on cardiovascular magnetic resonance late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance . 2020;22:66. PubMed PMC

Team RC . R: A language and environment for statistical computing . R Foundation for Statistical Computing; Vienna, Austria: 2014.

Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Statistics in Medicine . 2003;22:2693–2710. PubMed

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine . 2002;21:1539–1558. PubMed

Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics . 2005;30:261–293.

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology . 2014;14:135. PubMed PMC

Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S: An extension to the PRISMA Statement for reporting literature searches in systematic reviews. Systematic Reviews . 2021;10:39. PubMed PMC

Altay S. COVID-19 myocarditis cardiac magnetic resonance findings in symptomatic patients. Acta Radiologica . 2021:02841851211046502. PubMed PMC

Breitbart P, Koch A, Schmidt M, Magedanz A, Lindhoff-Last E, Voigtländer T, et al. Clinical and cardiac magnetic resonance findings in post-COVID patients referred for suspected myocarditis. Clinical Research in Cardiology . 2021;110:1832–1840. PubMed PMC

Haberka M, Rajewska-Tabor J, Wojtowicz D, Jankowska A, Miszalski-Jamka K, Janus M, et al. Perimyocardial injury specific for SARS-CoV-2-induced myocarditis in comparison with non-COVID-19 myocarditis: A multicenter CMR study. JACC: Cardiovascular Imaging . 2022;15:705–707. PubMed PMC

Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, et al. Cardiac Involvement in Patients Recovered from COVID-2019 Identified Using Magnetic Resonance Imaging. JACC: Cardiovascular Imaging . 2020;13:2330–2339. PubMed PMC

Kotecha T, Knight DS, Razvi Y, Kumar K, Vimalesvaran K, Thornton G, et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. European Heart Journal . 2021;42:1866–1878. PubMed PMC

Kravchenko D, Isaak A, Zimmer S, Mesropyan N, Reinert M, Faron A, et al. Cardiac MRI in Patients with Prolonged Cardiorespiratory Symptoms after Mild to Moderate COVID-19. Radiology . 2021;301:E419–E425. PubMed PMC

Li DL, Davogustto G, Soslow JH, Wassenaar JW, Parikh AP, Chew JD, et al. Characteristics of COVID-19 myocarditis with and without multisystem inflammatory syndrome. The American Journal of Cardiology . 2022;168:135–141. PubMed PMC

Li X, Wang H, Zhao R, Wang T, Zhu Y, Qian Y, et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings. Radiology . 2021;299:E230–E240. PubMed PMC

Myhre PL, Heck SL, Skranes JB, Prebensen C, Jonassen CM, Berge T, et al. Cardiac pathology 6 months after hospitalization for COVID-19 and association with the acute disease severity. American Heart Journal . 2021;242:61–70. PubMed PMC

Ng MY, Ferreira VM, Leung ST, Yin Lee JC, Ho-Tung Fong A, To Liu RW, et al. Patients Recovered from COVID-19 Show Ongoing Subclinical Myocarditis as Revealed by Cardiac Magnetic Resonance Imaging. JACC: Cardiovascular Imaging . 2020;13:2476–2478. PubMed PMC

Pan C, Zhang Z, Luo L, Wu W, Jia T, Lu L, et al. Cardiac T1 and T2 mapping showed myocardial involvement in recovered COVID-19 patients initially considered devoid of cardiac damage. Journal of Magnetic Resonance Imaging . 2021;54:421–428. PubMed PMC

Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19) JAMA Cardiology . 2020;5:1265–1273. PubMed PMC

Tanacli R, Doeblin P, Götze C, Zieschang V, Faragli A, Stehning C, et al. COVID-19 vs. classical myocarditis associated myocardial injury evaluated by cardiac magnetic resonance and endomyocardial biopsy. Frontiers in Cardiovascular Medicine . 2021;8:737257. PubMed PMC

Thornton GD, Shetye A, Knight DS, Knott K, Artico J, Kurdi H, et al. Myocardial perfusion imaging after severe COVID-19 infection demonstrates regional ischemia rather than global blood Flow reduction. Frontiers in Cardiovascular Medicine . 2021;8:764599. PubMed PMC

Urmeneta Ulloa J, Martínez de Vega V, Salvador Montañés O, Álvarez Vázquez A, Sánchez-Enrique C, Hernández Jiménez S, et al. Cardiac magnetic resonance in recovering COVID-19 patients. Feature tracking and mapping analysis to detect persistent myocardial involvement. IJC Heart & Vasculature . 2021;36:100854. PubMed PMC

Wang H, Li R, Zhou Z, Jiang H, Yan Z, Tao X, et al. Cardiac involvement in COVID-19 patients: mid-term follow up by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance . 2021;23:14. PubMed PMC

Wojtowicz D, Dorniak K, Ławrynowicz M, Rejszel-Baranowska J, Fijałkowska J, Kulawiak-Gałąska D, et al. Spectrum of lesions visualized in cardiac magnetic resonance imaging in COVID-19-related myocarditis: Findings from a pilot study of the TRICITY-CMR trial. Cardiology Journal . 2021;28:976–978. PubMed PMC

Zhang L, Wei X, Wang H, Jiang R, Tan Z, Ouyang J, et al. Cardiac involvement in patients recovering from delta variant of COVID-19: a prospective multi-parametric MRI study. ESC Heart Failure . 2022;9:2576–2584. PubMed PMC

Castiello T, Georgiopoulos G, Finocchiaro G, Claudia M, Gianatti A, Delialis D, et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Failure Reviews . 2022;27:251–261. PubMed PMC

Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. Journal of the American College of Cardiology . 2018;72:3158–3176. PubMed

Sawalha K, Abozenah M, Kadado AJ, Battisha A, Al-Akchar M, Salerno C, et al. Systematic Review of COVID-19 Related Myocarditis: Insights on Management and Outcome. Cardiovascular Revascularization Medicine . 2021;23:107–113. PubMed PMC

Petersen SE, Friedrich MG, Leiner T, Elias MD, Ferreira VM, Fenski M, et al. Cardiovascular Magnetic Resonance for Patients with COVID-19. JACC: Cardiovascular Imaging . 2022;15:685–699. PubMed PMC

Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. Journal of Cardiovascular Magnetic Resonance . 2020;22:87. PubMed PMC

Adeboye A, Alkhatib D, Butt A, Yedlapati N, Garg N. A review of the role of imaging modalities in the evaluation of viral myocarditis with a special focus on COVID-19-related myocarditis. Diagnostics . 2022;12:549. PubMed PMC

Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. Journal of Magnetic Resonance Imaging . 2007;26:452–459. PubMed

Kim PK, Hong YJ, Im DJ, Suh YJ, Park CH, Kim JY, et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean Journal of Radiology . 2017;18:113–131. PubMed PMC

Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. T (1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC: Cardiovascular Imaging . 2013;6:1048–1058. PubMed

Bohnen S, Radunski UK, Lund GK, Kandolf R, Stehning C, Schnackenburg B, et al. Performance of T1 and T2 Mapping Cardiovascular Magnetic Resonance to Detect Active Myocarditis in Patients with Recent-Onset Heart Failure. Circulation: Cardiovascular Imaging . 2015;8:e003073. PubMed

Wiesmueller M, Wuest W, Heiss R, Treutlein C, Uder M, May MS. Cardiac T2 mapping: robustness and homogeneity of standardized in-line analysis. Journal of Cardiovascular Magnetic Resonance . 2020;22:39. PubMed PMC

Eitel I, Stiermaier T, Lange T, Rommel KP, Koschalka A, Kowallick JT, et al. Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Prediction of Cardiovascular Events Following Myocardial Infarction. JACC: Cardiovascular Imaging . 2018;11:1433–1444. PubMed

Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF, et al. Feature-Tracking Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients with Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and Late Gadolinium Enhancement. JACC: Cardiovascular Imaging . 2018;11:1419–1429. PubMed PMC

Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. Journal of Cardiovascular Magnetic Resonance . 2020;22:42. PubMed PMC

Garg P, Saunders LC, Swift AJ, Wild JM, Plein S. Role of cardiac T1 mapping and extracellular volume in the assessment of myocardial infarction. The Anatolian Journal of Cardiology . 2018;19:404–411. PubMed PMC

Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. Journal of Cardiovascular Magnetic Resonance . 2016;18:89. PubMed PMC

Vöhringer M, Mahrholdt H, Yilmaz A, Sechtem U. Significance of Late Gadolinium Enhancement in Cardiovascular Magnetic Resonance Imaging (CMR) Herz . 2007;32:129–137. PubMed

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth Universal Definition of Myocardial Infarction (2018) Global Heart . 2018;13:305–338. PubMed

Matusik PS, Bryll A, Matusik PT, Popiela TJ. Ischemic and non-ischemic patterns of late gadolinium enhancement in heart failure with reduced ejection fraction. Cardiology journal . 2021;28:67–76. PubMed PMC

Shanbhag SM, Greve AM, Aspelund T, Schelbert EB, Cao JJ, Danielsen R, et al. Prevalence and prognosis of ischaemic and non-ischaemic myocardial fibrosis in older adults. European Heart Journal . 2019;40:529–538. PubMed PMC

Tyczyński P, Kukuła K, Pietrasik A, Bochenek T, Dębski A, Oleksiak A, et al. Anomalous origin of culprit coronary arteries in acute coronary syndromes. Cardiology journal . 2018;25:683–690. PubMed

Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of Fibrosis with Mortality and Sudden Cardiac Death in Patients with Nonischemic Dilated Cardiomyopathy. Journal of the American Medical Association . 2013;309:896–908. PubMed

Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation . 2015;132:1570–1579. PubMed PMC

Gutman SJ, Costello BT, Papapostolou S, Voskoboinik A, Iles L, Ja J, et al. Reduction in mortality from implantable cardioverter-defibrillators in non-ischaemic cardiomyopathy patients is dependent on the presence of left ventricular scar. European Heart Journal . 2019;40:542–550. PubMed

Pommier T, Leclercq T, Guenancia C, Tisserand S, Lairet C, Carré M, et al. More than 50% of persistent myocardial Scarring at one year in “Infarct-like” acute myocarditis evaluated by CMR. Journal of Clinical Medicine . 2021;10:4677. PubMed PMC

Caforio ALP, Marcolongo R, Basso C, Iliceto S. Clinical presentation and diagnosis of myocarditis. Heart . 2015;101:1332–1344. PubMed

Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C, et al. Cardiac MR With Late Gadolinium Enhancement in Acute Myocarditis With Preserved Systolic Function: ITAMY Study. Journal of the American College of Cardiology . 2017;70:1977–1987. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...