• This record comes from PubMed

Helicenes on Surfaces: Stereospecific On-Surface Chemistry, Single Enantiomorphism, and Electron Spin Selectivity

. 2024 Aug ; 36 (8) : e23706.

Status PubMed-not-MEDLINE Language English Country United States Media print

Document type Journal Article, Review

Grant support
Swiss National Science Foundation - Switzerland
Czech Science Foundation

Helicenes represent an important class of chiral organic material with promising optoelectronic properties. Hence, functionalization of surfaces with helicenes is a key step towards new organic material devices. This review presents different aspects of adsorption and modification of metal surfaces with different helicene species. Topics addressed are chiral crystallization, that is, 2D conglomerate versus racemate crystallization, breaking of mirror-symmetry in racemates, chirality-induced spin selectivity, and stereoselective on-surface chemistry.

See more in PubMed

J. Crassous, I. Stará, and I. Stary, eds., Helicenes ‐ Synthesis, Properties and Applications (Weinheim D: Wiley‐VCH, 2022), https://doi.org/10.1002/9783527829415.

Y. Shen and C.‐F. Chen, “Helicenes: Synthesis and Applications,” Chemical Reviews 112, no. 3 (2012): 1463–1535, https://doi.org/10.1021/cr200087r.

I. G. Stara and I. Starý, “Helically Chiral Aromatics: The Synthesis of Helicenes by [2 + 2 + 2] Cycloisomerization of π‐Electron Systems,” Accounts of Chemical Research 53, no. 1 (2020): 144–158, https://doi.org/10.1021/acs.accounts.9b00364.

T. Mori, “Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes,” Chemical Reviews 121, no. 4 (2021): 2373–2412, https://doi.org/10.1021/acs.chemrev.0c01017.

M. Gingras, “One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes,” Chemical Society Reviews 42, no. 3 (2013): 1051–1095, https://doi.org/10.1039/c2cs35134j.

Y. Yang, R. C. da Costa, M. J. Fuchter, and A. J. Campbell, “Circularly Polarized Light Detection by a Chiral Organic Semiconductor Transistor,” Nature Photonics 7, no. 8 (2013): 634–638, https://doi.org/10.1038/nphoton.2013.176.

K. Dhbaibi, L. Favereau, and J. Crassous, “Enantioenriched Helicenes and Helicenoids Containing Main‐Group Elements (B, Si, N, P),” Chemical Reviews 119, no. 14 (2019): 8846–8953, https://doi.org/10.1021/acs.chemrev.9b00033.

F. Pop, N. Zigon, and N. Avarvari, “Main‐Group‐Based Electro‐ and Photoactive Chiral Materials,” Chemical Reviews 119 (2019): 8435–8478, https://doi.org/10.1021/acs.chemrev.8b00770.

Y. Yang, R. C. da Costa, D.‐M. Smilgies, A. J. Campbell, and M. J. Fuchter, “Induction of Circularly Polarized Electroluminescence From an Achiral Light‐Emitting Polymer via a Chiral Small‐Molecule Dopant,” Advanced Materials 25, no. 18 (2013): 2624–2628, https://doi.org/10.1002/adma.201204961.

R. A. Sheldon, Chirotechnology (New York: Marcel Dekker, 1993).

J. Jacques, A. Collet, and S. H. Wilen, Enantiomers, Racemates, and Resolutions (Malabar, FL: Krieger Pub. Co, 1994).

C. P. Brock, W. B. Schweizer, and J. D. Dunitz, “On the Validity of Wallach's Rule: On the Density and Stability of Racemic Crystals Compared With Their Chiral Counterparts,” Journal of the American Chemical Society 113 (1991): 9811–9820.

K.‐H. Ernst, “On the Validity of Calling Wallach's Rule Wallach's Rule,” Israel Journal of Chemistry 57 (2016): 24–30.

M. Lahav and L. Leiserowitz, “Spontaneous Resolution: From Three‐Dimensional Crystals to Two‐Dimensional Magic Nanoclusters,” Angewandte Chemie, International Edition 38 (1999): 2533–2536.

S. Dutta and A. J. Gellman, “Enantiomer Surface Chemistry: Conglomerate Versus Racemate Formation on Surfaces,” Chemical Society Reviews 46 (2017): 7787–7839.

K.‐H. Ernst, “Stereochemical Recognition of Helicenes on Metal Surfaces,” Accounts of Chemical Research 49 (2016): 1182–1190.

J. Seibel, M. Parschau, and K.‐H. Ernst, “Two‐Dimensional Crystallization of Enantiopure and Racemic Heptahelicene on Ag(111) and Au(111),” Journal of Physical Chemistry C 118 (2014): 29135–29141.

H. Ascolani, M. W. van der Meijden, L. J. Cristina, et al., “Van der Waals Interactions in the Self‐Assembly of 5‐Amino[6]Helicene on Cu(100) and Au(111),” Chemical Communications 50 (2014): 13907–13909.

J. D. Fuhr, M. W. van der Meijden, L. J. Cristina, et al., “Chiral Expression of Adsorbed (MP) 5‐Amino[6]Helicenes: From Random Structures to Dense Racemic Crystals by Surface Alloying,” Chemical Communications 53 (2017): 130–133.

M. Parschau, R. Fasel, and K.‐H. Ernst, “Coverage and Enantiomeric Excess Dependent Enantiomorphism in Two‐Dimensional Molecular Crystals,” Crystal Growth & Design 8, no. 6 (2008): 1890–1896, https://doi.org/10.1021/cg701100r.

R. Fasel, M. Parschau, and K.‐H. Ernst, “Amplification of Chirality in Two‐Dimensional Enantiomorphous Lattices,” Nature 439, no. 7075 (2006): 449–452, https://doi.org/10.1038/nature04419.

M. Stöhr, S. Boz, M. Schär, et al., “Self‐Assembly and Two‐Dimensional Spontaneous Resolution of Cyano‐Functionalized [7]Helicenes on Cu(111),” Angewandte Chemie, International Edition 50 (2011): 9982–9986.

A. Mairena, J. I. Mendieta, O. Stetsovych, et al., “Heterochiral Recognition Among Functionalized Heptahelicenes on Noble Metal Surfaces,” Chemical Communications 55 (2019): 10595–10598.

A. Mairena, L. Zoppi, J. Seibel, et al., “Heterochiral to Homochiral Transition in Pentahelicene 2D Crystallization Induced by Second‐Layer Nucleation,” ACS Nano 11 (2017): 865–871.

J. Seibel, O. Allemann, J. S. Siegel, and K.‐H. Ernst, “Chiral Conflict Among Different Helicenes Suppresses Formation of One Enantiomorph in 2D Crystallization,” Journal of the American Chemical Society 135 (2013): 7434–7437.

A. Mairena, M. Parschau, J. Seibel, et al., “Diastereoselective Self‐Assembly of Bisheptahelicene on Cu(111),” Chemical Communications 54 (2018): 8757–8760.

J. Li, K. Martin, N. Avarvari, C. Wäckerlin, and K.‐H. Ernst, “Spontaneous Resolution of On‐Surface Synthesized Trishelicenes,” Chemical Communications 54 (2018): 7948–7951.

J. Seibel, L. Zoppi, and K.‐H. Ernst, “2D Conglomerate Crystallization of Heptahelicene,” Chemical Communications 50 (2014): 8751–8753.

J. Seibel, M. Parschau, and K.‐H. Ernst, “From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization,” Journal of the American Chemical Society 137 (2015): 7970–7973.

B. Irziqat, J. Berger, A. Cebrat, et al., “Conglomerate Aggregation of 7,12,17‐Trioxa[11]Helicene Into Homochiral Two‐Dimensional Crystals on the Cu(100) Surface,” Helvetica Chimica Acta 105, no. 12 (2022): e202200114, https://doi.org/10.1002/hlca.202200114.

L. Merz and K.‐H. Ernst, “Unification of the Matrix Notation in Molecular Surface Science,” Surface Science 604 (2010): 1049–1054.

B. Irziqat, J. Berger, J. I. Mendieta‐Moreno, M. S. Sundar, A. V. Bedekar, and K. H. Ernst, “Transition From Homochiral Clusters to Racemate Monolayers During 2D Crystallization of Trioxa[11]Helicene on Ag(100),” ChemPhysChem 22, no. 3 (2021): 293–297, https://doi.org/10.1002/cphc.202000853.

C. Viedma, “Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling,” Physical Review Letters 94 (2005): 065504.

W. L. Noorduin, P. van der Asdonk, H. Meekes, et al., “Complete Chiral Resolution Using Additive‐Induced Crystal Size Bifurcation During Grinding,” Angewandte Chemie, International Edition 48 (2009): 3278–3280.

A. G. Shtukenberg, Y. O. Punin, A. Gujral, and B. Kahr, “Growth Actuated Bending and Twisting of Single Crystals,” Angewandte Chemie, International Edition 53 (2014): 672–699.

M. M. Green, M. P. Reidy, R. J. Jonson, G. Darling, D. J. O'Leary, and G. Wilson, “Macromolecular Stereochemistry: The Out‐of‐Proportion Influence of Optically Active Comonomers on the Conformational Characteristics of Polyisocyanates. The Sergeants and Soldiers Experiment,” Journal of the American Chemical Society 111 (1989): 6452–6454.

M. M. Green, B. A. Garetz, B. Munoz, H. P. Chang, S. Hoke, and R. G. Cooks, “Majority Rules in the Copolymerization of Mirror Image Isomers,” Journal of the American Chemical Society 117 (1995): 4181–4182.

M. Parschau, S. Romer, and K.‐H. Ernst, “Induction of Homochirality in Achiral Enantiomorphous Monolayers,” Journal of the American Chemical Society 126 (2004): 15398–15399.

M. Parschau, T. Kampen, and K.‐H. Ernst, “Homochirality in Monolayers of Achiral Meso Tartaric Acid,” Chemical Physics Letters 407 (2005): 433–437.

M. Parschau and K.‐H. Ernst, “Disappearing Enantiomorphs: Single Handedness in Racemate Crystals,” Angewandte Chemie, International Edition 54 (2015): 14422–14426.

J. Seibel, M. Parschau, and K.‐H. Ernst, “Double Layer Crystallization of Heptahelicene on Noble Metal Surfaces,” Chirality 32 (2020): 975–980.

K.‐H. Ernst, “Amplification of Chirality at Solid Surfaces,” Origins of Life and Evolution of the Biosphere 40, no. 1 (2010): 41–50, https://doi.org/10.1007/s11084‐009‐9185‐2.

R. Naaman, Y. Paltiel, and D. H. Waldeck, “Chiral Molecules and the Electron Spin,” Nature Reviews Chemistry 3 (2019): 250–260.

P. V. Möllers, B. Göhler, and H. Zacharias, “Chirality Induced Spin Selectivity – The Photoelectron View,” Israel Journal of Chemistry 62 (2022): e202200062.

V. Kiran, S. P. Mathew, S. R. Cohen, I. Hernández Delgado, J. Lacour, and R. Naaman, “Helicenes‐A New Class of Organic Spin Filter,” Advanced Materials 28, no. 10 (2016): 1957–1962, https://doi.org/10.1002/adma.201504725.

K. Banerjee‐Ghosh, O. B. Dor, F. Tassinari, et al., “Separation of Enantiomers by Their Enantiospecific Interaction With Achiral Magnetic Substrates,” Science 360 (2018): 1331–1334.

M. Kettner, V. V. Maslyuk, D. Nürenberg, et al., “Chirality‐Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes,” Journal of Physical Chemistry Letters 9 (2018): 2025–2030, https://doi.org/10.1021/acs.jpclett.8b00208.

M. Baljozović, B. Arnoldi, S. Grass, et al., “Spin‐ and Angle‐Resolved Photoemission Spectroscopy Study of Heptahelicene Layers on Cu(111) surfaces,” The Journal of Chemical Physics 159 (2023): 044701.

M. Baljozović, A. F. Cauduro, J. Seibel, et al., “Growth Dynamics and Electron Reflectivity in Ultrathin Films of Chiral Heptahelicene on Metal (100) Surfaces Studied by Spin‐Polarized Low Energy Electron Microscopy,” Physica Status Solidi B: Basic Solid State Physics 258 (2021): 2100263.

M. R. Safari, F. Matthes, C. M. Schneider, K.‐H. Ernst, and D. Bürgler, “Spin‐Selective Electron Transport Through Single Chiral Molecules,” Small 19 (2023): 2308233.

M. R. Safari, F. Matthes, V. Caciuc, et al., “Enantioselective Adsorption on Magnetic Surfaces,” Advanced Materials 36 (2024): e2308666.

O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, “Spin‐Polarized Scanning Tunneling Spectroscopy of Nanoscale Cobalt Islands on Cu(111),” Physical Review Letters 92 (2004): 057202, https://doi.org/10.1103/PhysRevLett.92.057202.

H. Oka, P. A. Ignatiev, S. Wedekind, et al., “Spin‐Dependent Quantum Interference Within a Single Magnetic Nanostructure,” Science 327 (2010): 843–846, https://doi.org/10.1126/science.1183224.

W. H. Weinberg, “Precursor Intermediates and Precursor‐Mediated Surface Reactions: General Concepts, Direct Observations and Indirect Manifestations,” in Kinetics of Interface Reactions. Springer Series in Surface Science, vol. 8, eds. M. Grunze and H. J. Kreuzer (Berlin Heidelberg: Springer, 1987), 94–124, https://doi.org/10.1007/978‐3‐642‐72675‐0.

D. E. Brown, D. J. Moffatt, and R. A. Wolkow, “Isolation of an Intrinsic Precursor to Molecular Chemisorption,” Science 279 (1998): 542–544, https://doi.org/10.1126/science.279.5350.542.

O. A. Vydrov and T. V. Voorhis, “Nonlocal van der Waals Density Functional Made Simple,” Physical Review Letters 103 (2009): 063004, https://doi.org/10.1103/PhysRevLett.103.063004.

D. C. Langreth and B. I. Lundqvist, “Comment on “Nonlocal Van Der Waals Density Functional Made Simple”,” Physical Review Letters 104 (2010): 0999303, https://doi.org/10.1103/PhysRevLett.104.099303.

A. Narita, X.‐Y. Wang, X. Feng, and K. Müllen, “New Advances in Nanographene Chemistry,” Chemical Society Reviews 44 (2015): 6616–6643.

L. Dong, P. N. Liu, and N. Lin, “Surface‐Activated Coupling Reactions Confined on a Surface,” Accounts of Chemical Research 48 (2015): 2765–2774.

J. Cai, P. Ruffieux, R. Jaafar, et al., “Atomically Precise Bottom‐Up Fabrication of Graphene Nanoribbons,” Nature 466 (2010): 470–473.

K. Weiss, G. Beernink, F. Dötz, A. Birkner, K. Müllen, and C. Wöll, “Template‐Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface,” Angewandte Chemie, International Edition 38 (1999): 3748–3752.

A. Mairena, M. Baljozović, M. Kawecki, et al., “The Fate of Bromine After Temperature‐Induced Dehydrogenation of On‐Surface Synthesized Bisheptahelicene,” Chemical Science 10 (2019): 2998–3004.

O. Stetsovych, M. Švec, J. Vacek, et al., “From Helical to Planar Chirality by On‐Surface Chemistry,” Nature Chemistry 9 (2017): 213–218.

K.‐H. Ernst, “Surface Chemistry: Single Handedness in Flatland,” Nature Chemistry 9 (2017): 195–196.

B. Irziqat, A. Cebrat, M. Baljozović, et al., “Stereospecific On‐Surface Cyclodehydrogenation of Bishelicenes: Preservation of Handedness From Helical to Planar Chirality,” Chemistry ‐ A European Journal 27 (2021): 13523–13526.

H. Chen, L. Tao, D. Wang, et al., “Stereoselective On‐Surface Cyclodehydrofluorization of a Tetraphenylporphyrin and Homochiral Self‐Assembly,” Angewandte Chemie, International Edition 59 (2020): 17413–17416.

A. Mairena, C. Wäckerlin, M. Wienke, K. Grenader, A. Terfort, and K.‐H. Ernst, “Diastereoselective Ullmann Coupling to Bishelicenes by Surface Topochemistry,” Journal of the American Chemical Society 140 (2018): 15186–15189.

C. Wäckerlin, J. Li, A. Mairena, K. Martin, N. Avarvari, and K.‐H. Ernst, “Surface‐Assisted Diastereoselective Ullmann Coupling of Bishelicenes,” Chemical Communications 52 (2016): 12694–12697.

J. Voigt, K. Martin, E. Neziri, et al., “Highly Stereospecific On‐Surface Dimerization Into Bishelicenes: Topochemical Ullmann Coupling of Bromohelicene on Au(111),” Chemistry ‐ A European Journal 29 (2023): e202300134.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...