Biomarker profiles associated with reverse ventricular remodelling in patients with heart failure and a reduced ejection fraction: Insights from the echocardiographic substudy of the VICTORIA trial
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Randomized Controlled Trial
Grant support
Merck
Bayer
PubMed
39078607
DOI
10.1002/ejhf.3397
Knihovny.cz E-resources
- Keywords
- Biomarkers, Cardiac remodelling, Heart failure with reduced ejection fraction,
- MeSH
- Biomarkers * MeSH
- Echocardiography * methods MeSH
- Ventricular Function, Left physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Prospective Studies MeSH
- Ventricular Remodeling * physiology MeSH
- Aged MeSH
- Heart Failure * physiopathology MeSH
- Stroke Volume * physiology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Biomarkers * MeSH
AIMS: Reverse ventricular remodelling, defined as a decrease in left ventricular end-systolic volume indexed to body surface area (LVESVI) or an increase in left ventricular ejection fraction (LVEF), is associated with improved clinical outcomes in patients with heart failure with reduced ejection fraction (HFrEF). However, the underlying pathophysiological mechanisms remain unclear. METHODS AND RESULTS: We evaluated paired core-lab assessed echocardiograms and measurements of 92 biomarkers at baseline and 8 months thereafter in 419 participants with HFrEF. Reverse ventricular remodelling was defined as a >5% LVEF increase or >15% LVESVI relative decrease between baseline and 8 months. We evaluated the association between baseline biomarkers and their changes with reverse ventricular remodelling in the prospectively randomized controlled VICTORIA (Vericiguat Global Study in Subjects With Heart Failure With Reduced Ejection Fraction) trial. Of 419 patients (median age 66 [interquartile range 57-74] years, 27.4% women), 206 (49.2%) had reverse ventricular remodelling (either a 5% LVEF increase or a 15% LVESVI decrease). There were no differences in baseline biomarker concentrations between patients with versus those without reverse ventricular remodelling on follow-up. However, in patients with reverse ventricular remodelling there were significant decreases in biomarkers relating to inflammation and cardiac metabolism; particularly the tumour necrosis factor superfamily member 13B (ratio 0.82, 95% confidence interval [CI] 0.77-0.88), growth differentiation factor-15 (ratio 0.74, 95% CI 0.66-0.84), and insulin-like growth factor binding protein 7 (ratio 0.80, 95% CI 0.73-0.88). CONCLUSIONS: Reverse ventricular remodelling in patients with HFrEF is associated with a decrease of biomarkers related to inflammation and cardiac metabolism.
Charité University Medicine German Heart Center Berlin Germany
Department of Cardiology Institute for Clinical and Experimental Medicine IKEM Prague Czech Republic
Department of Cardiology University Medical Centre Groningen Groningen The Netherlands
INECO Neurociencias Oroño Fundación INECO Rosario Argentina
National Heart Centre Singapore Duke National University of Singapore Singapore Singapore
The Inova Center of Outcomes Research Inova Heart and Vascular Institute Falls Church VA USA
Unidad de Cirugía Cardiovascular de Guatemala Guatemala City Guatemala
University of Alberta Canadian VIGOUR Centre Edmonton AB Canada
University of Groningen Groningen The Netherlands
Volgograd State Medical University Regional Cardiology Centre Volgograd Volgograd Russian Federation
See more in PubMed
Tromp J, Ouwerkerk W, van Veldhuisen DJ, Hillege HL, Richards AM, van der Meer P, et al. A systematic review and network meta‐analysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail 2022;10:73–84. https://doi.org/10.1016/j.jchf.2021.09.004
Tromp J, Ponikowski P, Salsali A, Angermann CE, Biegus J, Blatchford J, et al. Sodium‐glucose co‐transporter 2 inhibition in patients hospitalized for acute decompensated heart failure: Rationale for and design of the EMPULSE trial. Eur J Heart Fail 2021;23:826–834. https://doi.org/10.1002/ejhf.2137
Pieske B, Pieske‐Kraigher E, Lam CSP, Melenovský V, Sliwa K, Lopatin Y, et al.; VICTORIA Study Group. Effect of vericiguat on left ventricular structure and function in patients with heart failure with reduced ejection fraction: The VICTORIA echocardiographic substudy. Eur J Heart Fail 2023;25:1012–1021. https://doi.org/10.1002/ejhf.2836
Tardif JC, O'Meara E, Komajda M, Böhm M, Borer JS, Ford I, et al.; SHIFT Investigators. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: Results from the SHIFT echocardiography substudy. Eur Heart J 2011;32:2507–2515. https://doi.org/10.1093/eurheartj/ehr311
Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail 2021;27:P387–P413. https://doi.org/10.1016/j.cardfail.2021.01.022
Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen DJ, Samani NJ, Ponikowski P, et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 2018;72:1081–1090. https://doi.org/10.1016/j.jacc.2018.06.050
Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, et al. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 2017;6:e003989. https://doi.org/10.1161/jaha.116.003989
Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, et al. A multicenter, randomized, double‐blind, placebo‐controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: The VICTORIA trial. JACC Heart Fail 2018;6:96–104. https://doi.org/10.1016/j.jchf.2017.08.013
Pieske B, Patel MJ, Westerhout CM, Anstrom KJ, Butler J, Ezekowitz J, et al.; VICTORIA Study Group. Baseline features of the VICTORIA (Vericiguat Global Study in Subjects with Heart Failure with Reduced Ejection Fraction) trial. Eur J Heart Fail 2019;21:1596–1604. https://doi.org/10.1002/ejhf.1664
Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al.; VICTORIA Study Group. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 2020;382:1883–1893. https://doi.org/10.1056/NEJMoa1915928
Lang RM, Badano LP, Mor‐Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233–270. https://doi.org/10.1093/ehjci/jev014
Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016;17:1321–1360. https://doi.org/10.1093/ehjci/jew082
Tromp J, Meyer S, Mentz RJ, O'Connor CM, Metra M, Dittrich HC, et al. Acute heart failure in the young: Clinical characteristics and biomarker profiles. Int J Cardiol 2016;221:1067–1072. https://doi.org/10.1016/j.ijcard.2016.06.339
Tromp J, Voors AA, Sharma A, Ferreira JP, Ouwerkerk W, Hillege HL, et al. Distinct pathological pathways in patients with heart failure and diabetes. JACC Heart Fail 2020;8:234–242. https://doi.org/10.1016/j.jchf.2019.11.005
Lam CSP, Piña IL, Zheng Y, Bonderman D, Pouleur AC, Saldarriaga C, et al.; VICTORIA Study Group. Age, sex, and outcomes in heart failure with reduced EF: Insights from the VICTORIA trial. JACC Heart Fail 2023;11:1246–1257. https://doi.org/10.1016/j.jchf.2023.06.020
Omar M, Jensen J, Ali M, Frederiksen PH, Kistorp C, Videbæk L, et al. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction: A substudy of the Empire HF randomized clinical trial. JAMA Cardiol 2021;6:836–840. https://doi.org/10.1001/jamacardio.2020.6827
McMurray JJV, Ponikowski P, Bolli GB, Lukashevich V, Kozlovski P, Kothny W, et al.; VIVIDD Trial Committees and Investigators. Effects of vildagliptin on ventricular function in patients with type 2 diabetes mellitus and heart failure: A randomized placebo‐controlled trial. JACC Heart Fail 2018;6:8–17. https://doi.org/10.1016/j.jchf.2017.08.004
Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, et al. Effect of liraglutide, a glucagon‐like peptide‐1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE) – a multicentre, double‐blind, randomised, placebo‐controlled trial. Eur J Heart Fail 2017;19:69–77. https://doi.org/10.1002/ejhf.657
Dargie HJ, Hildebrandt PR, Riegger GA, McMurray JJ, McMorn SO, Roberts JN, et al. A randomized, placebo‐controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association functional lass I or II heart failure. J Am Coll Cardiol 2007;49:1696–1704. https://doi.org/10.1016/j.jacc.2006.10.077
Doughty RN, Whalley GA, Walsh HA, Gamble GD, López‐Sendón J, Sharpe N. Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: The CAPRICORN Echo Substudy. Circulation 2004;109:201–206. https://doi.org/10.1161/01.CIR.0000108928.25690.94
Wong M, Staszewsky L, Latini R, Barlera S, Volpi A, Chiang YT, et al.; Val‐HeFT Heart Failure Trial Investigators. Valsartan benefits left ventricular structure and function in heart failure: Val‐HeFT echocardiographic study. J Am Coll Cardiol 2002;40:970–975. https://doi.org/10.1016/s0735‐1097(02)02063‐6
Wong M, Germanson T, Taylor WR, Cohen IS, Perry G, Baruch L, et al. Felodipine improves left ventricular emptying in patients with chronic heart failure: V‐HeFT III echocardiographic substudy of multicenter reproducibility and detecting functional change. J Card Fail 2000;6:19–28. https://doi.org/10.1016/s1071‐9164(00)00008‐7
Tromp J, Khan MAF, Mentz RJ, O'Connor CM, Metra M, Dittrich HC, et al. Biomarker profiles of acute heart failure patients with a mid‐range ejection fraction. JACC Heart Fail 2017;5:507–517. https://doi.org/10.1016/j.jchf.2017.04.007
Cauwenberghs N, Ravassa S, Thijs L, Haddad F, Yang WY, Wei FF, et al. Circulating biomarkers predicting longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc 2019;8:e010430. https://doi.org/10.1161/jaha.118.010430
Murphy SP, Prescott MF, Maisel AS, Butler J, Piña IL, Felker GM, et al. Association between angiotensin receptor‐neprilysin inhibition, cardiovascular biomarkers, and cardiac remodeling in heart failure with reduced ejection fraction. Circ Heart Fail 2021;14:e008410. https://doi.org/10.1161/CIRCHEARTFAILURE.120.008410
Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013;113:603–616. https://doi.org/10.1161/CIRCRESAHA.113.302095
Ceelen D, Voors AA, Tromp J, van Veldhuisen DJ, Dickstein K, de Boer RA, et al. Pathophysiological pathways related to high plasma growth differentiation factor 15 concentrations in patients with heart failure. Eur J Heart Fail 2022;24:308–320. https://doi.org/10.1002/ejhf.2424
Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Whellan DJ, et al. Utility of growth differentiation factor‐15, a marker of oxidative stress and inflammation, in chronic heart failure: Insights from the HF‐ACTION study. JACC Heart Fail 2017;5:724–734. https://doi.org/10.1016/j.jchf.2017.07.013
Chan MM, Santhanakrishnan R, Chong JP, Chen Z, Tai BC, Liew OW, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail 2016;18:81–88. https://doi.org/10.1002/ejhf.431
Du W, Piek A, Schouten EM, van de Kolk CWA, Mueller C, Mebazaa A, et al. Plasma levels of heart failure biomarkers are primarily a reflection of extracardiac production. Theranostics 2018;8:4155–4169. https://doi.org/10.7150/thno.26055
López‐Bermejo A, Khosravi J, Fernández‐Real JM, Hwa V, Pratt KL, Casamitjana R, et al. Insulin resistance is associated with increased serum concentration of IGF‐binding protein‐related protein 1 (IGFBP‐rP1/MAC25). Diabetes 2006;55:2333–2339. https://doi.org/10.2337/db05‐1627
Adamson C, Welsh P, Docherty KF, de Boer RA, Diez M, Drożdż J, et al. IGFBP‐7 and outcomes in heart failure with reduced ejection fraction: Findings from DAPA‐HF. JACC Heart Fail 2023;11:291–304. https://doi.org/10.1016/j.jchf.2022.09.004
Markousis‐Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, et al. The clinical significance of interleukin‐6 in heart failure: Results from the BIOSTAT‐CHF study. Eur J Heart Fail 2019;21:965–973. https://doi.org/10.1002/ejhf.1482
Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT; Anti‐TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double‐blind, placebo‐controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor‐alpha, in patients with moderate‐to‐severe heart failure: Results of the Anti‐TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107:3133–3140. https://doi.org/10.1161/01.CIR.0000077913.60364.D2