Enhancing metabarcoding efficiency and ecological insights through integrated taxonomy and DNA reference barcoding: A case study on beach meiofauna
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
T0206/37197/2021/kg
Stemmler Foundation
PubMed
39086104
DOI
10.1111/1755-0998.13997
Knihovny.cz E-zdroje
- Klíčová slova
- DNA barcoding, Molecular reference database, community ecology, invertebrates,
- MeSH
- bezobratlí genetika klasifikace MeSH
- biodiverzita MeSH
- ekosystém MeSH
- koupací pláže MeSH
- metagenomika metody MeSH
- respirační komplex IV * genetika MeSH
- taxonomické DNA čárové kódování * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nizozemsko MeSH
- Severní moře MeSH
- Názvy látek
- respirační komplex IV * MeSH
Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ecosystems and are inhabited by meiofauna, microscopic animals living in the interstitial space between the sand grains, which play a key role in coastal biodiversity and ecosystem dynamics. However, research on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. We generated 775 new cytochrome c oxidase I DNA barcodes from meiofauna specimens collected along the Netherlands' west coast and combined them with the NCBI GenBank database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 North Sea beaches, a region extensively studied for meiofauna, using both the enriched reference database and the NCBI database without the additional reference barcodes. Our results show a 2.5-fold increase in sequence annotation and a doubling of species-level Operational Taxonomic Units (OTUs) identification when annotating the metabarcoding data with the enhanced database. Additionally, our analyses revealed a bell-shaped curve of OTU richness across the intertidal zone, aligning more closely with morphological analysis patterns, and more defined community dissimilarity patterns between supralittoral and intertidal sites. Our research highlights the importance of expanding molecular reference databases and combining morphological taxonomy with molecular techniques for biodiversity assessments, ultimately improving our understanding of coastal ecosystems.
Cyprus Marine and Maritime Institute CMMI House Larnaca Cyprus
Department of Biodiversity Ecology and Evolution Universidad Complutense de Madrid Madrid Spain
Department of Chemical Engineering Cyprus University of Technology Limassol Cyprus
Department of Ecology Faculty of Science Charles University Prague 2 Czech Republic
Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
Department of Zoology Swedish Museum of Natural History Stockholm Sweden
Dipartimento di Medicina Veterinaria Università di Sassari Sassari Italy
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
National Biodiversity Future Center Palermo Italy
National Research Council of Italy Verbania Pallanza Italy
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Naturalis Biodiversity Center Marine Biodiversity Leiden The Netherlands
Zobrazit více v PubMed
Armonies, W. (2018). Uncharted biodiversity in the marine benthos: The void of the smallish with description of ten new platyhelminth taxa from the well‐studied North Sea. Helgoland Marine Research, 72(1), 1–29.
Armonies, W., & Reise, K. (2000). Faunal diversity across a sandy shore. Marine Ecology Progress Series, 196, 49–57.
Atherton, S., & Jondelius, U. (2020). Biodiversity between sand grains: Meiofauna composition across southern and western Sweden assessed by metabarcoding. Biodiversity Data Journal, 8, e51813.
Aylagas, E., Borja, Á., Irigoien, X., & Rodríguez‐Ezpeleta, N. (2016). Benchmarking DNA metabarcoding for biodiversity‐based monitoring and assessment. Frontiers in Marine Science, 3, 96. https://doi.org/10.3389/fmars.2016.00096
Balsamo, M., Artois, T., Smith, J. P. S., 3rd, Todaro, M. A., Guidi, L., Leander, B. S., & Van Steenkiste, N. W. L. (2020). The curious and neglected soft‐bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia, 847(12), 2613–2644.
Behrens‐Chapuis, S., Herder, F., & Geiger, M. F. (2021). Adding DNA barcoding to stream monitoring protocols ‐ What's the additional value and congruence between morphological and molecular identification approaches? PLoS One, 16(1), e0244598.
Benson, D. A., Cavanaugh, M., Clark, K., Karsch‐Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Research, 41(D1), D36–D42.
Buchner, D., Macher, T.‐H., & Leese, F. (2022). APSCALE: Advanced pipeline for simple yet comprehensive analyses of DNA metabarcoding data. Bioinformatics, 38(20), 4817–4819.
Castro, L. R., Meyer, R. S., Shapiro, B., Shirazi, S., Cutler, S., Lagos, A. M., & Quiroga, S. Y. (2021). Metabarcoding meiofauna biodiversity assessment in four beaches of northern Colombia: Effects of sampling protocols and primer choice. Hydrobiologia, 848(15), 3407–3426.
Caterino, M. S., & Recuero, E. (2024). Shedding light on dark taxa in sky‐Island Appalachian leaf litter: Assessing patterns of endemicity using large‐scale, voucher‐based barcoding. Insect Conservation and Diversity/Royal Entomological Society of London, 17(1), 16–30.
Chang, J. J. M., Ip, Y. C. A., Ng, C. S. L., & Huang, D. (2020). Takeaways from Mobile DNA barcoding with BentoLab and MinION. Genes, 11(10), 1121.
Collins, R. A., Bakker, J., Wangensteen, O. S., Soto, A. Z., Corrigan, L., Sims, D. W., Genner, M. J., & Mariani, S. (2019). Non‐specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 10, 1985–2001. https://doi.org/10.1111/2041‐210X.13276
Creedy, T. J., Norman, H., Tang, C. Q., Qing Chin, K., Andujar, C., Arribas, P., O'Connor, R. S., Carvell, C., Notton, D. G., & Vogler, A. P. (2020). A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Molecular Ecology Resources, 20(1), 40–53.
Creer, S., Fonseca, V. G., Porazinska, D. L., Giblin‐Davis, R. M., Sung, W., Power, D. M., Packer, M., Carvalho, G. R., Blaxter, M. L., Lambshead, P. J. D., & Thomas, W. K. (2010). Ultrasequencing of the meiofaunal biosphere: Practice, pitfalls and promises. Molecular Ecology, 19(Suppl 1), 4–20.
Curini‐Galletti, M., Artois, T., Delogu, V., De Smet, W. H., Fontaneto, D., Jondelius, U., Leasi, F., Martínez, A., Meyer‐Wachsmuth, I., Nilsson, K. S., Tongiorgi, P., Worsaae, K., & Todaro, M. A. (2012). Patterns of diversity in soft‐bodied meiofauna: Dispersal ability and body size matter. PLoS One, 7(3), e33801.
Curini‐Galletti, M., Fontaneto, D., & Martinez, A. (2023). Diversity of Platyhelminthes Proseriata in Western Mediterranean sandy beaches: A database of species occurrences and traits. Biogeographia – The Journal of Integrative Biogeography, 38(2). https://doi.org/10.21426/B638261295
De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long‐read sequencing data. Bioinformatics, 34(15), 2666–2669.
De Souza Amorim, D., Oliveira, S. S., Balbi, M. I. P., Ang, Y., Yeo, D., Srivathsan, A., & Meier, R. (2023). An integrative taxonomic treatment of the Mycetophilidae (Diptera: Bibionomorpha) from Singapore reveals 115 new species on 730km2. bioRxiv. https://doi.org/10.1101/2023.09.02.555672
Dugal, L., Thomas, L., Wilkinson, S. P., Richards, Z. T., Alexander, J. B., Adam, A. A. S., Kennington, W. J., Jarman, S., Ryan, N. M., Bunce, M., & Gilmour, J. P. (2022). Coral monitoring in northwest Australia with environmental DNA metabarcoding using a curated reference database for optimized detection. Environmental DNA, 4(1), 63–76.
Emerson, B. C., Borges, P. A. V., Cardoso, P., Convey, P., deWaard, J. R., Economo, E. P., Gillespie, R. G., Kennedy, S., Krehenwinkel, H., Meier, R., Roderick, G. K., Strasberg, D., Thébaud, C., Traveset, A., Creedy, T. J., Meramveliotakis, E., Noguerales, V., Overcast, I., Morlon, H., … Andújar, C. (2023). Collective and harmonized high throughput barcoding of insular arthropod biodiversity: Toward a genomic observatories network for islands. Molecular Ecology, 32(23), 6161–6176.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.
Faria, L. C., Di Domenico, M., Andrade, S. C. S., Santos, M. C. D., Fonseca, G., Zanol, J., & Amaral, A. C. Z. (2018). The use of metabarcoding for meiofauna ecological patterns assessment. Marine Environmental Research, 140, 160–168.
Felix, G., Marenzi, R. C., Polette, M., & Netto, S. A. (2016). Landscape visual quality and meiofauna biodiversity on Sandy beaches. Environmental Management, 58(4), 682–693.
Ficetola, G. F., & Taberlet, P. (2023). Towards exhaustive community ecology via DNA metabarcoding. Molecular Ecology, 32(23), 6320–6329.
Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.
Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., & Creer, S. (2010). Second‐generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications, 1(7), 98.
Fontaneto, D., Flot, J.‐F., & Tang, C. Q. (2015). Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity: A Journal of the Senckenberg Research Institute/Senckenberg Forschungsinstitut Und Naturmudeum, 45(3), 433–451.
Garlasché, G., Borgomaneiro, G., Piscia, R., Manca, M., Eckert, E. M., & Fontaneto, D. (2023). Metabarcoding to monitor the crustacean zooplankton of a lake improves when using a reference DNA library from local samples. Journal of Limnology, 82. https://doi.org/10.4081/jlimnol.2023.2087
Geller, J., Meyer, C., Parker, M., & Hawk, H. (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Molecular Ecology Resources, 13(5), 851–861.
Germán Rodríguez, J. (2004). Community structure of intertidal meiofauna along a gradient of morphodynamic states on an exposed North Sea beach. Sarsia, 89(1), 22–32.
Gheskiere, T., Vincx, M., Weslawski, J. M., Scapini, F., & Degraer, S. (2005). Meiofauna as descriptor of tourism‐induced changes at sandy beaches. Marine Environmental Research, 60(2), 245–265.
Giebner, H., Langen, K., Bourlat, S. J., Kukowka, S., Mayer, C., Astrin, J. J., Misof, B., & Fonseca, V. G. (2020). Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Molecular Ecology Resources, 20(5), 1333–1345.
Gielings, R., Fais, M., Fontaneto, D., Creer, S., Costa, F. O., Renema, W., & Macher, J.‐N. (2021). DNA metabarcoding methods for the study of marine benthic meiofauna: A review. Frontiers in Marine Science, 8, 730063. https://doi.org/10.3389/fmars.2021.730063
Gingold, R., Mundo‐Ocampo, M., Holovachov, O., & Rocha‐Olivares, A. (2010). The role of habitat heterogeneity in structuring the community of intertidal free‐living marine nematodes. Marine Biology, 157(8), 1741–1753.
Giribet, G., Wangensteen, O. S., Garcés‐Pastor, S., Møller, P. R., & Worsaae, K. (2023). Using eDNA to find micrognathozoa. Current Biology, 33(14), R756–R757.
Gold, Z., Curd, E. E., Goodwin, K. D., Choi, E. S., Frable, B. W., Thompson, A. R., Walker, H. J., Jr., Burton, R. S., Kacev, D., Martz, L. D., & Barber, P. H. (2021). Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Molecular Ecology Resources, 21(7), 2546–2564.
Gray, J. S., & Rieger, R. M. (1971). A quantitative study of the meiofauna of an exposed Sandy Beach, at Robin Hood's bay, Yorkshire. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom, 51(1), 1–19.
Haenel, Q., Holovachov, O., Jondelius, U., Sundberg, P., & Bourlat, S. (2017). NGS‐based biodiversity and community structure analysis of meiofaunal eukaryotes in shell sand from Hållö Island, Smögen, and soft mud from Gullmarn Fjord, Sweden. Biodiversity Data Journal, 5, e12731.
Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321.
Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package “geosphere”. Spherical Trigonometry, 1(7), 1–45.
Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge‐Chang, A. (2019). Moving beyond P values: Data analysis with estimation graphics. Nature Methods, 16(7), 565–566.
Keck, F., Couton, M., & Altermatt, F. (2023). Navigating the seven challenges of taxonomic reference databases in metabarcoding analyses. Molecular Ecology Resources, 23(4), 742–755.
Kjærandsen, J. (2022). Current state of DNA barcoding of Sciaroidea (Diptera)‐highlighting the need to build the reference library. Insects, 13(2), 142. https://doi.org/10.3390/insects13020147
Kocher, A., Gantier, J.‐C., Gaborit, P., Zinger, L., Holota, H., Valiere, S., Dusfour, I., Girod, R., Bañuls, A.‐L., & Murienne, J. (2017). Vector soup: High‐throughput identification of neotropical phlebotomine sand flies using metabarcoding. Molecular Ecology Resources, 17(2), 172–182.
Kotwicki, L., Troch, M. D., Urban‐Malinga, B., Gheskiere, T., & Węslawski, J. M. (2005). Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgoland Marine Research, 59(4), 255–264.
Lansu, E. M., Reijers, V. C., Höfer, S., Luijendijk, A., Rietkerk, M., Wassen, M. J., Lammerts, E. J., & van der Heide, T. (2024). A global analysis of how human infrastructure squeezes sandy coasts. Nature Communications, 15(1), 432.
Leasi, F., & Norenburg, J. L. (2014). The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea. PLoS One, 9(8), e104385.
Leasi, F., Sevigny, J. L., Laflamme, E. M., Artois, T., Curini‐Galletti, M., de Jesus Navarrete, A., Di Domenico, M., Goetz, F., Hall, J. A., Hochberg, R., Jörger, K. M., Jondelius, U., Todaro, M. A., Wirshing, H. H., Norenburg, J. L., & Thomas, W. K. (2018). Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Communications Biology, 1, 112.
Leray, M., & Knowlton, N. (2015). DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences of the United States of America, 112(7), 2076–2081.
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., Boehm, J. T., & Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10(1), 1–14.
Macher, J.‐N., Bloska, D. M., Holzmann, M., Girard, E. B., Pawlowski, J., & Renema, W. (2022). Mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding of foraminifera communities using taxon‐specific primers. PeerJ, 10, e13952.
Macher, T.‐H., Schütz, R., Yildiz, A., Beermann, A. J., & Leese, F. (2023). Evaluating five primer pairs for environmental DNA metabarcoding of central European fish species based on mock communities. Metabarcoding and Metagenomics, 7, e103856.
Maggia, M.‐E., Decaëns, T., Lapied, E., Dupont, L., Roy, V., Schimann, H., Orivel, J., Murienne, J., Baraloto, C., Cottenie, K., & Steinke, D. (2021). At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 164, 103932.
Magoga, G., Forni, G., Brunetti, M., Meral, A., Spada, A., De Biase, A., & Montagna, M. (2022). Curation of a reference database of COI sequences for insect identification through DNA metabarcoding: COins. Database: The Journal of Biological Databases and Curation, 2022, baac055.
Maria, T. F., Esteves, A. M., Vanaverbeke, J., & Vanreusel, A. (2013). Is nematode colonisation in the presence of Scolelepis in tropical sandy‐beach sediment similar to the colonisation process in temperate sandy beaches? Brazilian Journal of Biology, 73(1), 19–28.
Marin, C., Marco‐Jiménez, F., Martínez‐Priego, L., De Marco‐Romero, G., Soriano‐Chirona, V., Lorenzo‐Rebenaque, L., & D'Auria, G. (2022). Rapid Oxford nanopore technologies MinION sequencing workflow for campylobacter jejuni identification in broilers on site—A proof‐of‐concept study. Animals, 12(16), 2065.
Martínez, A., Di Domenico, M., Leasi, F., Curini‐Galletti, M., Todaro, M. A., Zotto, M. D., Gobert, S., Artois, T., Norenburg, J., Jörger, K. M., Núñez, J., Fontaneto, D., & Worsaae, K. (2019). Patterns of diversity and endemism of soft‐bodied meiofauna in an oceanic Island, Lanzarote, Canary Islands. Marine Biodiversity: A Journal of the Senckenberg Research Institute/Senckenberg Forschungsinstitut Und Naturmudeum, 49(5), 2033–2055.
Martínez, A., Eckert, E. M., Artois, T., Careddu, G., Casu, M., Curini‐Galletti, M., Gazale, V., Gobert, S., Ivanenko, V. N., Jondelius, U., Marzano, M., Pesole, G., Zanello, A., Todaro, M. A., & Fontaneto, D. (2020). Human access impacts biodiversity of microscopic animals in sandy beaches. Communications Biology, 3(1), 1–9.
Martinez, A., Fontaneto, D., & Curini‐Galetti, M. (2023). The swash zone selects functionally specialized assemblages of beach interstitial meiofauna (Platyhelminthes, Proseriata). Authorea Preprints. https://doi.org/10.22541/au.169777988.89244524/v1
McLachlan, A., Defeo, O., & Short, A. D. (2018). Characterising sandy beaches into major types and states: Implications for ecologists and managers. Estuarine, Coastal and Shelf Science, 215, 152–160.
Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins‐Tinch, C. H., Sochat, V., Forster, J., Lee, S., Twardziok, S. O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., & Köster, J. (2021). Sustainable data analysis with Snakemake. F1000Research, 10, 33.
Pereira, T. J., Gingold, R., Villegas, A. D. M., & Rocha‐Olivares, A. (2017). Patterns of spatial variation of meiofauna in Sandy beaches of northwestern Mexico with contrasting levels of disturbance. Thalassas: An International Journal of Marine Sciences, 34(1), 53–63.
Ratnasingham, S., & Hebert, P. D. N. (2007). Bold: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355–364.
Recuero, E., Etzler, F. E., & Caterino, M. S. (2023). Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries. Current Zoology, zoad051.
Reise, K., & Ax, P. (1979). A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Marine Biology, 54(3), 225–237.
Ren, Y., Porazinska, D. L., Ma, Q., Liu, S., Li, H., & Qing, X. (2023). A single degenerated primer significantly improves COX1 barcoding performance in soil nematode community profiling. Soil Ecology Letters, 6(2), 1–14.
Sahlin, K., Lim, M. C. W., & Prost, S. (2021). NGSpeciesID: DNA barcode and amplicon consensus generation from long‐read sequencing data. Ecology and Evolution, 11(3), 1392–1398.
Schlacher, T. A., Dugan, J., Schoeman, D. S., Lastra, M., Jones, A., Scapini, F., McLachlan, A., & Defeo, O. (2007). Sandy beaches at the brink. Diversity and Distributions, 13(5), 556–560.
Schmidt‐Rhaesa, A. (2020). Guide to the identification of marine meiofauna. Verlag Dr. Friedrich Pfeil.
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps illuminated – Reducing sequence‐to‐sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15(6), 1289–1303.
Schratzberger, M., & Ingels, J. (2018). Meiofauna matters: The roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology, 502, 12–25.
Somerfield, P. J., & Warwick, R. M. (2013). Meiofauna techniques. In Methods for the study of marine benthos (pp. 253–284). John Wiley & Sons, Ltd.
Srivathsan, A., Feng, V., Suárez, D., Emerson, B., & Meier, R. (2023). ONTbarcoder 2.0: Rapid species discovery and identification with real‐time barcoding facilitated by Oxford nanopore R10.4. Cladistics: The International Journal of the Willi Hennig Society, 40, 192–203. https://doi.org/10.1111/cla.12566
Srivathsan, A., Hartop, E., Puniamoorthy, J., Lee, W. T., Kutty, S. N., Kurina, O., & Meier, R. (2019). Rapid, large‐scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biology, 17(1), 96.
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA: For biodiversity research and monitoring. Oxford University Press.
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next‐generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21(8), 2045–2050.
Tang, C. Q., Leasi, F., Obertegger, U., Kieneke, A., Barraclough, T. G., & Fontaneto, D. (2012). The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16208–16212.
Vincx, M., Meire, P., & Heip, C. (1990). The distribution of nematodes communities in the southern bight of the North Sea. Cahiers de Biologie Marine, 31, 107–129.
Wangensteen, O. S., Palacín, C., Guardiola, M., & Turon, X. (2018). DNA metabarcoding of littoral hard‐bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ, 6, e4705.
Weigand, A. M., & Macher, J.‐N. (2018). A DNA metabarcoding protocol for hyporheic freshwater meiofauna: Evaluating highly degenerate COI primers and replication strategy. Metabarcoding and Metagenomics, 2, e26869.
Weigand, H., Beermann, A. J., Čiampor, F., Costa, F. O., Csabai, Z., Duarte, S., Geiger, M. F., Grabowski, M., Rimet, F., Rulik, B., Strand, M., Szucsich, N., Weigand, A. M., Willassen, E., Wyler, S. A., Bouchez, A., Borja, A., Čiamporová‐Zaťovičová, Z., Ferreira, S., … Ekrem, T. (2019). DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap‐analysis and recommendations for future work. The Science of the Total Environment, 678, 499–524.
Ye, J., McGinnis, S., & Madden, T. L. (2006). BLAST: Improvements for better sequence analysis. Nucleic Acids Research, 34(suppl_2), W6–W9.
Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D., Fontanier, C., Gooday, A. J., Kristensen, R. M., Ivanenko, V. N., Sørensen, M. V., Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro, T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V., … Fernandes, D. (2015). Is the meiofauna a good indicator for climate change and anthropogenic impacts? Marine Biodiversity: A Journal of the Senckenberg Research Institute/Senckenberg Forschungsinstitut Und Naturmudeum, 45(3), 505–535.
Zhou, X., Robinson, J. L., Geraci, C. J., Parker, C. R., Flint, O. S., Jr., Etnier, D. A., Ruiter, D., DeWalt, R. E., Jacobus, L. M., & Hebert, P. D. N. (2011). Accelerated construction of a regional DNA‐barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park. Journal of the North American Benthological Society, 30(1), 131–162.