Environmental gradients and optimal fixation time revealed with DNA metabarcoding of benthic sample fixative
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0084/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
P503-23-06379S
Grantová Agentura České Republiky
PubMed
39117754
PubMed Central
PMC11310421
DOI
10.1038/s41598-024-68939-x
PII: 10.1038/s41598-024-68939-x
Knihovny.cz E-zdroje
- MeSH
- bezobratlí genetika klasifikace MeSH
- biodiverzita * MeSH
- DNA genetika izolace a purifikace analýza MeSH
- ekosystém MeSH
- jezera * MeSH
- taxonomické DNA čárové kódování * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
Assessments of biodiversity and ecosystem status can benefit from DNA metabarcoding as a means to streamline sample processing and specimen identification. Moreover, processing the fixation medium instead of the precious material introduces straightforward protocols that allow subsequent focus on certain organisms detected among the preserved specimens. In this study, we present a proof of concept via the analysis of freshwater invertebrate samples from the Tatra Mountain lakes (Slovakia). Besides highlighting a match between the lake-specific environmental conditions and the results of our fixative DNA metabarcoding, we observed an option to fine-tune the fixation time: to prefer two weeks over a day or a month. This effect emerged from the presence/absence of individual taxa rather than from coarse per-sample records of taxonomic richness, demonstrating that metabarcoding studies-and efforts to optimize their protocols-can use the robust metrics to explore even subtle trends. We also provide evidence that fixative DNA might better capture large freshwater species than terrestrial or meiofauna.
Zobrazit více v PubMed
Birk, S. et al. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic.18, 31–41 (2012).10.1016/j.ecolind.2011.10.009 DOI
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv.232, 8–27 (2019).10.1016/j.biocon.2019.01.020 DOI
Fjellheim, A. et al. Diversity and distribution patterns of benthic invertebrates along alpine gradients. A study of remote European freshwater lakes. Adv. Limnol.62, 167–190 (2009).10.1127/advlim/62/2009/167 DOI
Kopáček, J. et al. Climate change accelerates recovery of the Tatra Mountain lakes from acidification and increases their nutrient and chlorophyll a concentrations. Aquat. Sci.81, 70 (2019).10.1007/s00027-019-0667-7 DOI
Čiamporová-Zaťovičová, Z. & Čiampor, F. Alpine lakes and ponds – a promising source of high genetic diversity in metapopulations of aquatic insects. Inland Waters7, 109–117 (2017).10.1080/20442041.2017.1294361 DOI
Bitušík, P., Svitok, M., Novikmec, M., Trnková, K. & Hamerlík, L. Biological recovery of acidified alpine lakes may be delayed by the dispersal limitation of aquatic insect adults. Hydrobiologia790, 287–298 (2017).10.1007/s10750-016-3039-5 DOI
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B: Biol. Sci.270, 313–321 (2003).10.1098/rspb.2002.2218 PubMed DOI PMC
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol.26, 5872–5895 (2017). 10.1111/mec.14350 PubMed DOI
Leese, F. et al. Chapter two—why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic biomonitoring 2.0: A perspective derived from the DNAqua-Net COST action. In Adv. Ecol. Res. Vol. 58 (eds. David A. B. et al.) 63–99 (Academic Press, 2018).
Pereira-da-Conceicoa, L. et al. Metabarcoding unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. Environ. DNA3, 353–371 (2021).10.1002/edn3.116 DOI
Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ.678, 499–524 (2019). 10.1016/j.scitotenv.2019.04.247 PubMed DOI
Zizka, V. M. A., Geiger, M. F. & Leese, F. DNA metabarcoding of stream invertebrates reveals spatio-temporal variation but consistent status class assessments in a natural and urban river. Ecol. Indic.115, 106383 (2020).10.1016/j.ecolind.2020.106383 DOI
Beermann, A. J., Werner, M. T., Elbrecht, V., Zizka, V. M. A. & Leese, F. DNA metabarcoding improves the detection of multiple stressor responses of stream invertebrates to increased salinity, fine sediment deposition and reduced flow velocity. Sci. Total Environ.750, 141969 (2021). 10.1016/j.scitotenv.2020.141969 PubMed DOI
Buchner, D. et al. Analysis of 13,312 benthic invertebrate samples from German streams reveals minor deviations in ecological status class between abundance and presence/absence data. PLOS ONE14, e0226547 (2019). 10.1371/journal.pone.0226547 PubMed DOI PMC
Cordier, T. et al. Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring. Mol. Ecol. Resour.18, 1381–1391 (2018). 10.1111/1755-0998.12926 PubMed DOI
Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol.7, 6918–6926 (2017). 10.1002/ece3.3192 PubMed DOI PMC
Hajibabaei, M., Spall, J. L., Shokralla, S. & van Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol.12, 28 (2012). 10.1186/1472-6785-12-28 PubMed DOI PMC
Zizka, V. M. A., Leese, F., Peinert, B. & Geiger, M. F. DNA metabarcoding from sample fixative as a quick and voucher-preserving biodiversity assessment method. Genome62, 122–136 (2018). 10.1139/gen-2018-0048 PubMed DOI
Erdozain, M. et al. Metabarcoding of storage ethanol vs. conventional morphometric identification in relation to the use of stream macroinvertebrates as ecological indicators in forest management. Ecol. Indic.101, 173–184 (2019).10.1016/j.ecolind.2019.01.014 DOI
Martins, F. M. S. et al. Have the cake and eat it: Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring. Mol. Ecol. Resour.19, 863–876 (2019). 10.1111/1755-0998.13012 PubMed DOI PMC
Wang, Y. et al. Environmental DNA of preservative ethanol performed better than water samples in detecting macroinvertebrate diversity using metabarcoding. Divers. Distrib.27, 1989–2002 (2021).10.1111/ddi.13284 DOI
Meissner, K., Aroviita, J., Baattrup-Pedersen, A. & Buchner, D. Metabarcoding for Use in Nordic Routine Aquatic Biomonitoring: A Validation Study (Nordic Council of Ministers, 2021).
Majaneva, M., Diserud, O. H., Eagle, S. H., Hajibabaei, M. & Ekrem, T. Choice of DNA extraction method affects DNA metabarcoding of unsorted invertebrate bulk samples. Metabarcoding Metagenom.2, e26664 (2018).10.3897/mbmg.2.26664 DOI
Zenker, M. M., Specht, A. & Fonseca, V. G. Assessing insect biodiversity with automatic light traps in Brazil: Pearls and pitfalls of metabarcoding samples in preservative ethanol. Ecol. Evol.10, 2352–2366 (2020). 10.1002/ece3.6042 PubMed DOI PMC
Couton, M. et al. High-throughput sequencing on preservative ethanol is effective at jointly examining infraspecific and taxonomic diversity, although bioinformatics pipelines do not perform equally. Ecol. Evol.11, 5533–5546 (2021). 10.1002/ece3.7453 PubMed DOI PMC
Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol.8, 1265–1275 (2017).10.1111/2041-210X.12789 DOI
Nichols, S. J. et al. Towards routine DNA metabarcoding of macroinvertebrates using bulk samples for freshwater bioassessment: Effects of debris and storage conditions on the recovery of target taxa. Freshw. Biol.65, 607–620 (2020).10.1111/fwb.13443 DOI
Martins, F. M. S. et al. Modelling technical and biological biases in macroinvertebrate community assessment from bulk preservative using multiple metabarcoding markers. Mol. Ecol.30, 3221–3238 (2021). 10.1111/mec.15620 PubMed DOI PMC
Derycke, S. et al. Detection of macrobenthos species with metabarcoding is consistent in bulk DNA but dependent on body size and sclerotization in eDNA from the ethanol preservative. Front. Mar. Sci.8, 859 (2021).10.3389/fmars.2021.637858 DOI
Marquina, D., Esparza-Salas, R., Roslin, T. & Ronquist, F. Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol. Ecol. Resour.19, 1516–1530 (2019). 10.1111/1755-0998.13071 PubMed DOI PMC
Kirse, A., Bourlat, S. J., Langen, K., Zapke, B. & Zizka, V. M. A. Comparison of destructive and nondestructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Mol. Ecol. Resour.23, 92–105 (2023). 10.1111/1755-0998.13694 PubMed DOI
Persaud, S. F., Cottenie, K. & Gleason, J. E. Ethanol eDNA reveals unique community composition of aquatic macroinvertebrates compared to bulk tissue metabarcoding in a biomonitoring sampling scheme. Diversity13, 34 (2021).10.3390/d13010034 DOI
Chimeno, C. et al. Depicting environmental gradients from Malaise trap samples: Is ethanol-based DNA metabarcoding enough?. Insect Conserv. Divers.16, 47–64 (2023).10.1111/icad.12609 DOI
Buchner, D., Haase, P. & Leese, F. Wet grinding of invertebrate bulk samples—a scalable and cost-efficient protocol for metabarcoding and metagenomics. Metabarcoding Metagenom.5, e67533 (2021).10.3897/mbmg.5.67533 DOI
Batovska, J., Piper, A. M., Valenzuela, I., Cunningham, J. P. & Blacket, M. J. Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches. Sci. Rep.11, 7946 (2021). 10.1038/s41598-021-85855-6 PubMed DOI PMC
Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA3, 261–276 (2021).10.1002/edn3.177 DOI
Kopáček, J. et al. Catchment biogeochemistry modifies long-term effects of acidic deposition on chemistry of mountain lakes. Biogeochemistry125, 315–335 (2015).10.1007/s10533-015-0127-y DOI
Bitušík, P., Dobríková, D., Pıpík, R. & Hamerlík, L. Relict chironomid communities surviving in the coldest High Tatra Mountain lakes confirmed by a palaeolimnological survey. Biologia72, 965–969 (2017).10.1515/biolog-2017-0102 DOI
Hamerlík, L., Thomková, K. & Bitušík, P. First record of Rheocricotopus (s. str.) reduncus Sæther & Schnell, 1988 (Diptera: Chironomidae) from Slovakia: A new glacial relict found in the Tatra Mountains. Lauterbornia79, 58–60 (2015).
Lindholm, M., d’Auriac, M. A., Thaulow, J. & Hobæk, A. Dancing around the pole: holarctic phylogeography of the Arctic fairy shrimp Branchinecta paludosa (Anostraca, Branchiopoda). Hydrobiologia772, 189–205 (2016).10.1007/s10750-016-2660-7 DOI
Gregor, V. & Pacl, J. Hydrology of the Tatra mountain lakes. Acta Hydrol. Slovaca6, 161–187 (2005).
Kopáček, J., Stuchlík, E. & Hardekopf, D. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia61, 21–33 (2006).10.2478/s11756-006-0117-6 DOI
Frost, S. A., Huni, A. & Kershaw, W. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool.49, 167–173 (1971).10.1139/z71-026 DOI
Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol.64, 380–387 (2019).10.1111/fwb.13220 DOI
Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ7, e7745 (2019). 10.7717/peerj.7745 PubMed DOI PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.17, 10–12 (2011).10.14806/ej.17.1.200 DOI
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics30, 614–620 (2013). 10.1093/bioinformatics/btt593 PubMed DOI PMC
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ4, e2584 (2016). 10.7717/peerj.2584 PubMed DOI PMC
Andújar, C. et al. Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data. Mol. Ecol. Resour.21, 1772–1787 (2021). 10.1111/1755-0998.13337 PubMed DOI
Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun.8, 1188 (2017). 10.1038/s41467-017-01312-x PubMed DOI PMC
Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes7, 355–364 (2007). 10.1111/j.1471-8286.2007.01678.x PubMed DOI PMC
Buchner, D. & Leese, F. BOLDigger—a Python package to identify and organise sequences with the Barcode of Life Data systems. Metabarcoding Metagenom.4, e53535 (2020).10.3897/mbmg.4.53535 DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/ (2014).
Wickham, H. et al. Welcome to the tidyverse. J. Open Sourc. Softw.4, 1686 (2019).10.21105/joss.01686 DOI
Wickham, H. & Bryan, J. readxl: Read Excel Files. version 1.4.2.https://rdrr.io/cran/readxl/ (2023).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. https://rdrr.io/cran/vegan/ (2022).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J.9, 378–400 (2017).10.32614/RJ-2017-066 DOI
Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw.69, 1–33 (2016).10.18637/jss.v069.i01 DOI
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.6. https://rdrr.io/cran/DHARMa/ (2022).
Arel-Bundock, V. modelsummary: Data and model summaries in R. J. Stat. Softw.103, 1–23 (2022).10.18637/jss.v103.i01 DOI
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw.87, 1–27 (2018).10.18637/jss.v087.i09 DOI
Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw.8, 1–27 (2003).10.18637/jss.v008.i15 DOI
Wei, T. & Simko, V. R package 'corrplot': Visualization of a Correlation Matrix. R package version 0.92.https://rdrr.io/cran/corrplot/ (2021).
Harrell Jr, F. E. Hmisc: Harrell Miscellaneous. R package version 5.1-0. https://rdrr.io/cran/Hmisc/ (2023).
Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw.22, 1–20 (2007).10.18637/jss.v022.i04 DOI
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26, 32–46 (2001).
Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ6, e4980 (2018). 10.7717/peerj.4980 PubMed DOI PMC
Catalan, J. et al. Ecological thresholds in European alpine lakes. Freshw. Biol.54, 2494–2517 (2009).10.1111/j.1365-2427.2009.02286.x DOI
Karlsson, J., Jonsson, A. & Jansson, M. Productivity of high-latitude lakes: Climate effect inferred from altitude gradient. Glob. Chang. Biol.11, 710–715 (2005).10.1111/j.1365-2486.2005.00945.x DOI
Stuchlík, E. et al. Complexity in the Biological recovery of tatra mountain lakes from acidification. Water Air Soil Pollut.228, 5 (2017).10.1007/s11270-017-3362-0 DOI
Čiamporová-Zaťovičová, Z., Hamerlík, L., Šporka, F. & Bitušík, P. Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: A basis for climate change assessment. Hydrobiologia648, 19–34 (2010).10.1007/s10750-010-0139-5 DOI
Krno, I. et al. Littoral benthic macroinvertebrates of mountain lakes in the Tatra Mountains (Slovakia, Poland). Biologia61, 147–166 (2006).10.2478/s11756-006-0127-4 DOI
Klepke, M. J., Sigsgaard, E. E., Jensen, M. R., Olsen, K. & Thomsen, P. F. Accumulation and diversity of airborne, eukaryotic environmental DNA. Environ. DNA4, 1323–1339 (2022).10.1002/edn3.340 DOI
Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ. DNA4, 790–807 (2022).10.1002/edn3.290 DOI
Hebert, P. D. N. et al. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. B Biol. Sci.371, 20150333 (2016). 10.1098/rstb.2015.0333 PubMed DOI PMC
Ekrem, T., Stur, E., Orton, M. G. & Adamowicz, S. J. DNA barcode data reveal biogeographic trends in Arctic non-biting midges. Genome61, 787–796 (2018). 10.1139/gen-2018-0100 PubMed DOI
Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol.19, 217 (2021). 10.1186/s12915-021-01141-x PubMed DOI PMC
Bozáňová, J., Čiamporová Zatovičová, Z., Čiampor-Jr, F., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ8, e10039 (2020). 10.7717/peerj.10039 PubMed DOI PMC
Macher, J.-N. et al. Enhancing metabarcoding efficiency and ecological insights through integrated taxonomy and DNA reference barcoding: A case study on beach meiofauna. BioRxiv2024, 587521 (2024). PubMed
Pawlowski, J. et al. Assessing the potential of nematode metabarcoding for benthic monitoring of offshore oil platforms. Sci. Total Env.933, 173092 (2024). 10.1016/j.scitotenv.2024.173092 PubMed DOI