• This record comes from PubMed

Drought risk in Moldova under global warming and possible crop adaptation strategies

. 2024 Aug ; 1538 (1) : 144-161. [epub] 20240731

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
TED2021-129152B-C41 Spanish Ministry of Science, Innovation and Universities
PID2022-137244OB-I00 Spanish Ministry of Science, Innovation and Universities
European Commission, AXIS (Assessment of Cross(X)-sectoral climate Impacts and pathways for Sustainable transformation)
JPI-Climate co-funded call: CROSSDRO
CZ.02.1.01/0.0/0.0/16_019/0000797 CzechGlobe: SustES - Adaptationstrategies for sustainable ecosystem services and food security under adverseenvironmental conditions
CSIC: Interdisciplinary Thematic Platform (PTI) clima y servicios climáticos (PTI-CSC)

This study analyzes the relationship between drought processes and crop yields in Moldova, together with the effects of possible future climate change on crops. The severity of drought is analyzed over time in Moldova using the Standard Precipitation Index, the Standardized Precipitation Evapotranspiration Index, and their relationship with crop yields. In addition, rainfall variability and its relationship with crop yields are examined using spectral analysis and squared wavelet coherence. Observed station data (1950-2020 and 1850-2020), ERA5 reanalysis data (1950-2020), and climate model simulations (period 1970-2100) are used. Crop yield data (maize, sunflower, grape), data from experimental plots (wheat), and the Enhanced Vegetation Index from Moderate Resolution Imaging Spectroradiometer satellites were also used. Results show that although the severity of meteorological droughts has decreased in the last 170 years, the impact of precipitation deficits on different crop yields has increased, concurrent with a sharp increase in temperature, which negatively affected crop yields. Annual crops are now more vulnerable to natural rainfall variability and, in years characterized by rainfall deficits, the possibility of reductions in crop yield increases due to sharp increases in temperature. Projections reveal a pessimistic outlook in the absence of adaptation, highlighting the urgency of developing new agricultural management strategies.

See more in PubMed

Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002. https://doi.org/10.1088/1748‐9326/2/1/014002

Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975. https://doi.org/10.1073/pnas.0403720101

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594–15598. https://doi.org/10.1073/pnas.0906865106

Kim, D., Lee, W.‐S., Kim, S. T., & Chun, J. A. (2019). Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration. Water Resources Research, 55, 6244–6267.

Páscoa, P., Gouveia, C., Russo, A., Bojariu, R., Vicente‐Serrano, S., & Trigo, R. (2020). Drought impacts on vegetation in southeastern Europe. Remote Sensing, 12, 2156. https://doi.org/10.3390/rs12132156

Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10, 2944.

Wang, H., Vicente‐Serrano, S M., Tao, F., Zhang, X., Wang, P., Zhang, C., Chen, Y., Zhu, D., & Kenawy, A. E. (2016). Monitoring winter wheat drought threat in Northern China using multiple climate‐based drought indices and soil moisture during 2000–2013. Agricultural and Forest Meteorology, 228–229, 1–12. https://doi.org/10.1016/j.agrformet.2016.06.004

Hlavinka, P., Trnka, M., Semerádová, D., Dubrovský, M., Žalud, Z., & Možný, M. (2009). Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology, 149, 431–442. https://doi.org/10.1016/j.agrformet.2008.09.004

Potopová, V., Trnka, M., Hamouz, P., Soukup, J., & Castraveț, T. (2020). Statistical modelling of drought‐related yield losses using soil moisture‐vegetation remote sensing and multiscalar indices in the south‐eastern Europe. Agricultural Water Management, 236, 106168. https://doi.org/10.1016/j.agwat.2020.106168

Durre, I., Wallace, J. M., & Lettenmaier, D. P. (2000). Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer. Journal of Climate, 13, 2641–2651. https://doi.org/10.1175/1520‐0442(2000)013<2641:DOEDMT>2.0.CO;2

Teuling, A. J., Seneviratne, S. I., Williams, C., & Troch, P. A. (2006). Observed timescales of evapotranspiration response to soil moisture. Geophysical Research Letters, 33, L23403. https://doi.org/10.1029/2006GL028178

Fontana, G., Toreti, A., Ceglar, A., & De Sanctis, G. (2015). Early heat waves over Italy and their impacts on durum wheat yields. Natural Hazards and Earth System Sciences, 15, 1631–1637. https://doi.org/10.5194/nhess‐15‐1631‐2015

Hernandez‐Barrera, S., Rodriguez‐Puebla, C., & Challinor, A. J. (2016). Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology, 129, 503–519. https://doi.org/10.1007/s00704‐016‐1779‐9

Lüttger, A. B., & Feike, T. (2018). Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany. Theoretical and Applied Climatology, 132, 15–29. https://doi.org/10.1007/s00704‐017‐2076‐y

Zampieri, M., Ceglar, A., Dentener, F., & Toreti, A. (2017). Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12, 064008. https://doi.org/10.1088/1748‐9326/aa723b

Breshears, D. D., Adams, H. D., Eamus, D., Mcdowell, N. G., Law, D. J., Will, R. E., Williams, A. P, & Zou, C. B. (2013). The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die‐off. Frontiers in Plant Science, 4, Article 266. https://doi.org/10.3389/fpls.2013.00266

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & Mcdowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550–1566. https://doi.org/10.1111/nph.16485

Mcdowell, N. G., Anderson‐Teixeira, K., Biederman, J. A., Breshears, D. D., Fang, Y., Fernández‐De‐Uña, L., Graham, E. B., Mackay, D. S, Mcdonnell, J. J., Moore, G. W., Nehemy, M. F., Stevens Rumann, C. S., Stegen, J., Tague, N., Turner, M. G., & Chen, X. (2023). Ecohydrological decoupling under changing disturbances and climate. One Earth, 6, 251–266. https://doi.org/10.1016/j.oneear.2023.02.007

Anderegg, W. R. L., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D. L., & Field, C. B. (2012). The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233–237. https://doi.org/10.1073/pnas.1107891109

Forzieri, G., Dakos, V., Mcdowell, N. G., Ramdane, A., & Cescatti, A. (2022). Emerging signals of declining forest resilience under climate change. Nature, 608, 534–539. https://doi.org/10.1038/s41586‐022‐04959‐9

Mcdowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T., Mackay, D. S., Sperry, J. S., Boutz, A., Dickman, L., Gehres, N., Limousin, J. M., Macalady, A., Martínez‐Vilalta, J., Mencuccini, M., Plaut, J. A., Ogée, J., Pangle, R. E., Rasse, D. P., Ryan, M. G., … Pockman, W. T. (2013). Evaluating theories of drought‐induced vegetation mortality using a multimodel‐experiment framework. New Phytologist, 200, 304–321. https://doi.org/10.1111/nph.12465

Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368, 261–266. https://doi.org/10.1126/science.aat7631

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147. https://doi.org/10.1038/nclimate2470

Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., Mclean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21, 4115–4127. https://doi.org/10.1111/gcb.13022

Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., & Makowski, D. (2020). Impact of extreme weather conditions on European crop production in 2018: Random forest—Yield anomalies. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190510. https://doi.org/10.1098/rstb.2019.0510

Lobell, D. B., Field, C. B., Cahill, K. N., & Bonfils, C. (2006). Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology, 141, 208–218. https://doi.org/10.1016/j.agrformet.2006.10.006

Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen‐Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003

Tebaldi, C., & Lobell, D. B. (2008). Towards probabilistic projections of climate change impacts on global crop yields. Geophysical Research Letters, 35, L08705. https://doi.org/10.1029/2008GL033423

Conley, M. M., Kimball, B. A., Brooks, T. J., Pinter Jr, P. J., Hunsaker, D. J., Wall, G. W., Adam, N. R., LaMorte, R. L., Matthias, A. D., Thompson, T. L., Leavitt, S. W., & Triggs, J. M. (2001). CO2 enrichment increases water‐use efficiency in sorghum. New Phytologist, 151, 407–412. https://doi.org/10.1046/j.1469‐8137.2001.00184.x

De Kauwe, M. G., Medlyn, B. E., & Tissue, D. T. (2021). To what extent can rising [CO2] ameliorate plant drought stress? New Phytologist, 231, 2118–2124. https://doi.org/10.1111/nph.17540

Peters, W., van der Velde, I. R., van Schaik, E., Miller, J. B., Ciais, P., Duarte, H. F., van der Laan‐Luijkx, I. T., van der Molen, M. K., Scholze, M., Schaefer, K., Vidale, P. L., Verhoef, A., Wårlind, D., Zhu, D., Tans, P. P., Vaughn, B., & White, J. W. C. (2018). Increased water‐use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nature Geoscience, 11, 744–748. https://doi.org/10.1038/s41561‐018‐0212‐7

Menezes‐Silva, P. E., Loram‐Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. D. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 9, 11979–11999.

Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. J., Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W., & Shaw, M. R. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11–25.

Vicente‐Serrano, S. M., Miralles, D. G., Mcdowell, N., Brodribb, T., Domínguez‐Castro, F., Leung, R., & Koppa, A. (2022). The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth‐Science Reviews, 230, 104055. https://doi.org/10.1016/j.earscirev.2022.104055

Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated‐CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657.

Potop, V. (2011). Evolution of drought severity and its impact on corn in the Republic of Moldova. Theoretical and Applied Climatology, 105, 469–483. https://doi.org/10.1007/s00704‐011‐0403‐2

Potopová, V., Boroneanţ, C., Boincean, B., & Soukup, J. (2016). Impact of agricultural drought on main crop yields in the Republic of Moldova. International Journal of Climatology, 36, 2063–2082. https://doi.org/10.1002/joc.4481

The World Bank. (2021). Special Focus Note: Moldova's vulnerability to natural disasters and climate risks.

Nedealcov, M. (2019). Regional meteoclimatic hazards associated to climatic change in the Republic of Moldova. Romanian Journal of Geography, 63, 167–183.

Mihăilă, D., Piticar, A., Briciu, A. E., Bistricean, P. I., Lazurca, L. G., & Puţuntică, A. (2018). Changes in bioclimatic indices in the Republic of Moldova (1960–2012): Consequences for tourism. Boletin De La Asociacion De Geografos Espanoles, 2018, 521–548. https://doi.org/10.21138/bage.2550

Petrea, Ș. M., Cristea, D. S., Turek Rahoveanu, M. M., Zamfir, C. G., Turek Rahoveanu, A., Zugravu, G. A., & Nancu, D. (2020). Perspectives of the Moldavian agricultural sector by using a custom‐developed analytical framework. Sustainability (Switzerland), 12, 4671. https://doi.org/10.3390/su12114671

Boincean, B. (2012). Soil fertility and nitrogen fertilization in the modern sustainable farming systems of Moldova.

Kulzhanov, S. N., Kazybayeva, S. Z., Tazhibaev, T. S., Azhitaeva, L. A., & Yessenaliyeva, M. (2022). Effect of climatic conditions on the productive and biochemical characteristics of grape varieties grown on sierozem soil. Eurasian Journal of Soil Science, 11, 174–183. https://doi.org/10.18393/ejss.1057156

Chen, M., Xie, P., & Janowiak, J. E. (2002). Global land precipitation: A 50‐yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266. https://doi.org/10.1175/1525‐7541(2002)003<0249:GLPAYM>2.0.CO;2

Menne, M J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network‐daily database. Journal of Atmospheric and Oceanic Technology, 29, 897–910. https://doi.org/10.1175/JTECH‐D‐11‐00103.1

Mestre, O., Domonkos, P., Picard, F., Auer, I., Robin, S., Lebarbier, E., Böhm, R., Aguilar, E., Guijarro Pastor, J. A., Vertacnik, G., Klancar, M., & Stepanek, P. (2013). HOMER: A homogenization software—Methods and applications. Idojaras, 117, 47–67.

Allen, R. G., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.‐N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049. https://doi.org/10.1002/qj.3803

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034‐4257(02)00096‐2

Jönsson, P., & Eklundh, L. (2004). TIMESAT—A program for analyzing time‐series of satellite sensor data. Computers and Geosciences, 30, 833–845.

Gutowski Jr., W J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H. S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'rourke, E., Rixen, M., Solman, S., Stephenson, T., & Tangang, F. (2016). WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geoscientific Model Development, 9, 4087–4095. https://doi.org/10.5194/gmd‐9‐4087‐2016

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., … Yiou, P. (2014). EURO‐CORDEX: New high‐resolution climate change projections for European impact research. Regional Environmental Change, 14, 563–578. https://doi.org/10.1007/s10113‐013‐0499‐2

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., Van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach‐Sagi, K., & Wulfmeyer, V. (2014). Regional climate modeling on European scales: A joint standard evaluation of the EURO‐CORDEX RCM ensemble. Geoscientific Model Development, 7, 1297–1333. https://doi.org/10.5194/gmd‐7‐1297‐2014

Boincean, B., & Dent, D. (2019). Farming the black earth. Springer.

Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Eighth Conference on Applied Climatology (pp. 17–22).

Beguería, S., Vicente‐Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34, 3001–3023. https://doi.org/10.1002/joc.3887

Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from ambient air temperature. American Society of Agricultural Engineers.

Vicente‐Serrano, S. M., Azorin‐Molina, C., Sanchez‐Lorenzo, A., Revuelto, J., López‐Moreno, J. I., González‐Hidalgo, J. C., Moran‐Tejeda, E., & Espejo, F. (2014). Reference evapotranspiration variability and trends in Spain, 1961–2011. Global and Planetary Change, 121, 26–40. https://doi.org/10.1016/j.gloplacha.2014.06.005

Vicente‐Serrano, S. M., Mcvicar, T. R., Miralles, D. G., Yang, Y., & Tomas‐Burguera, M. (2020). Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Climate Change, 11, e632. https://doi.org/10.1002/wcc.632

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78. https://doi.org/10.1175/1520‐0477(1998)079<0061:APGTWA>2.0.CO;2

Juez, C., Garijo, N., Vicente‐Serrano, S. M., & Beguería, S. (2023). Six decades of hindsight into Yesa reservoir (Central Spanish Pyrenees): River flow dwindles as vegetation cover increases and Mediterranean atmospheric dynamics take control. Water Resources Research, 59, e2022WR033304. https://doi.org/10.1029/2022WR033304

Juez, C., Garijo, N., Hassan, M. A., & Nadal‐Romero, E. (2021). Intraseasonal‐to‐interannual analysis of discharge and suspended sediment concentration time‐series of the Upper Changjiang (Yangtze river). Water Resources Research, 57, e2020WR029457. https://doi.org/10.1029/2020WR029457

Labat, D., Ronchail, J., & Guyot, J. L. (2005). Recent advances in wavelet analysis: Part 2 ‐ Amazone, Parana, Orinoco and Congo interannual and multidecadal variability.

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566. https://doi.org/10.5194/npg‐11‐561‐2004

Ayarzagüena, B., Barriopedro, D., Garrido‐Perez, J. M., Abalos, M., De La Cámara, A., García‐Herrera, R., Calvo, N., & Ordóñez, C. (2018). Stratospheric connection to the abrupt end of the 2016/2017 Iberian drought. Geophysical Research Letters, 45, 12,612–639,646. https://doi.org/10.1029/2018GL079802

Garrido‐Perez, J. M., Ordóñez, C., Barriopedro, D., García‐Herrera, R., & Paredes, D. (2020). Impact of weather regimes on wind power variability in western Europe. Applied Energy, 264, 114731. https://doi.org/10.1016/j.apenergy.2020.114731

Kleschenko, A. (2005). Monitoring and predicting agricultural drought: A global study. Oxford.

Jaagus, J., Aasa, A., Aniskevich, S., Boincean, B., Bojariu, R., Briede, A., Danilovich, I., Castro, F. D., Dumitrescu, A., Labuda, M., Labudová, L., Lõhmus, K., Melnik, V., Mõisja, K., Pongracz, R., Potopová, V., Řezníčková, L., Rimkus, E., Semenova, I., … Zahradníček, P. (2021). Long‐term changes in drought indices in eastern and central Europe. International Journal of Climatology, 42, 225–249. https://doi.org/10.1002/joc.7241

Vicente‐Serrano, S M., Domínguez‐Castro, F., Murphy, C., Hannaford, J., Reig, F., Peña‐Angulo, D., Tramblay, Y., Trigo, R M., Mac Donald, N., Luna, M. Y, Mc Carthy, M., Van Der Schrier, G., Turco, M., Camuffo, D., Noguera, I., García‐Herrera, R., Becherini, F., Della Valle, A., Tomas‐Burguera, M., & El Kenawy, A. (2021). Long term variability and trends of droughts in Western Europe (1851–2018). International Journal of Climatology, 41, E690–E717.

Critchley, W., Siegert, K., & Finkel, M. (1991). A manual for the design and construction of water harvesting schemes for plant production. Rome: Food and Agricultural Organization.

Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., & Hawkins, E. (2021). Changing state of the climate system. In Climate Change 2021: The Physical Science Basis. Contribution Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Potop, V., Boroneanţ, C., Možný, M., Štěpánek, P., & Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115, 563–581.

Maček, U., Bezak, N., & Šraj, M. (2018). Reference evapotranspiration changes in Slovenia, Europe. Agricultural and Forest Meteorology, 260–261, 183–192. https://doi.org/10.1016/j.agrformet.2018.06.014

Vicente‐Serrano, S. M., Peña‐Angulo, D., Beguería, S., Domínguez‐Castro, F., Tomás‐Burguera, M., Noguera, I., Gimeno‐Sotelo, L., & El Kenawy, A. (2022). Global drought trends and future projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 20210285. https://doi.org/10.1098/rsta.2021.0285

Sulman, B. N., Roman, D. T, Yi, K., Wang, L., Phillips, R. P., & Novick, K. A. (2016). High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophysical Research Letters, 43, 9686–9695. https://doi.org/10.1002/2016GL069416

Mcdowell, N. G., Brodribb, T. J., & Nardini, A. (2019). Hydraulics in the 21st century. New Phytologist, 224, 537–542. https://doi.org/10.1111/nph.16151

Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., & Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40, 2071–2075. https://doi.org/10.1002/grl.50495

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth‐Science Reviews, 99, 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147. https://doi.org/10.1038/nclimate2470

Lobell, D. B., Schlenker, W., & Costa‐Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.

Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on European crop yields. Proceedings of the National Academy of Sciences of the United States of America, 112, 2670–2675. https://doi.org/10.1073/pnas.1409606112

Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C J., Kurnaz, M. L, Li, D., … Dosio, A. (2020). Future global meteorological drought hot spots: A study based on CORDEX data. Journal of Climate, 33, 3635–3661. https://doi.org/10.1175/JCLI‐D‐19‐0084.1

Enke, W., Deutschländer, T., Schneider, F., & Küchler, W. (2005). Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorologische Zeitschrift, 14, 247–257. https://doi.org/10.1127/0941‐2948/2005/0028

Terray, L., Demory, M. E., Déqué, M., De Coetlogon, G., & Maisonnave, E. (2004). Simulation of late‐twenty‐first‐century changes in wintertime atmospheric circulation over Europe due to anthropogenic causes. Journal of Climate, 17, 4630–4635. https://doi.org/10.1175/JCLI‐3244.1

Zappa, G., & Shepherd, T. G. (2017). Storylines of atmospheric circulation change for European regional climate impact assessment. Journal of Climate, 30, 6561–6577. https://doi.org/10.1175/JCLI‐D‐16‐0807.1

Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., Van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J., Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., … Wulfmeyer, V. (2021). Assessment of the European climate projections as simulated by the large EURO‐CORDEX regional and global climate model ensemble. Journal of Geophysical Research: Atmospheres, 126, e2019JD032356. https://doi.org/10.1029/2019JD032356

Coppola, E., Raffaele, F., Giorgi, F., Giuliani, G., Xuejie, G., Ciarlo, J. M., Sines, T. R., Torres‐Alavez, J. A., Das, S., Di Sante, F., Pichelli, E., Glazer, R., Müller, S. K., Abba Omar, S., Ashfaq, M., Bukovsky, M., Im, E. S., Jacob, D., Teichmann, C., … Rechid, D. (2021). Climate hazard indices projections based on CORDEX‐CORE, CMIP5 and CMIP6 ensemble. Climate Dynamics, 57, 1293–1383. https://doi.org/10.1007/s00382‐021‐05640‐z

Hsu, H., & Dirmeyer, P. A. (2023). Soil moisture‐evaporation coupling shifts into new gears under increasing CO2. Nature Communications, 14, 1162. https://doi.org/10.1038/s41467‐023‐36794‐5

Lansu, E. M., Van Heerwaarden, C. C., Stegehuis, A. I., & Teuling, A J. (2020). Atmospheric aridity and apparent soil moisture drought in European forest during heat waves. Geophysical Research Letters, 47, e2020GL087091.

Liu, Y., Pan, Z., Zhuang, Q., Miralles, D G., Teuling, A. J., Zhang, T., An, P., Dong, Z., Zhang, J., He, D., Wang, L., Pan, X., Bai, W., & Niyogi, D. (2015). Agriculture intensifies soil moisture decline in Northern China. Scientific Reports, 5, 11261. https://doi.org/10.1038/srep11261

Dai, A., & Zhao, T. (2017). Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144, 519–533. https://doi.org/10.1007/s10584‐016‐1705‐2

Li, J., Huo, R., Chen, H., Zhao, Y., & Zhao, T. (2021). Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Frontiers in Earth Science, 9, 430. https://doi.org/10.3389/feart.2021.687976

Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., Spinoni, J., Vogt, J., & Feyen, L. (2018). Global changes in drought conditions under different levels of warming. Geophysical Research Letters, 45, 3285–3296. https://doi.org/10.1002/2017GL076521

Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718–1736. https://doi.org/10.1002/joc.5291

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., & Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8, 421–426. https://doi.org/10.1038/s41558‐018‐0138‐5

Boincean, B., & Lal, R. (2014). Conservation agriculture on chernozems in the Republic of Moldova. https://doi.org/10.1201/b17747

De Salvo, M., Begalli, D., Capitello, R., Agnoli, L., & Tabouratzi, E. (2017). Determinants of winegrowers’ profitability: Evidence from an Eastern Europe wine region. EuroMed Journal of Business, 12, 300–315. https://doi.org/10.1108/EMJB‐12‐2016‐0043

Geana, I., Iordache, A., Ionete, R., Marinescu, A., Ranca, A., & Culea, M. (2013). Geographical origin identification of Romanian wines by ICP‐MS elemental analysis. Food Chemistry, 138, 1125–1134. https://doi.org/10.1016/j.foodchem.2012.11.104

Pomerleau, J., Mckee, M., Rose, R., Haerpfer, C. W., Rotman, D., & Tumanov, S. (2008). Hazardous alcohol drinking in the former Soviet Union: A cross‐sectional study of eight countries. Alcohol and Alcoholism, 43, 351–359. https://doi.org/10.1093/alcalc/agm167

Ramos, M. C. (2006). Soil water content and yield variability in vineyards of Mediterranean northeastern Spain affected by mechanization and climate variability. Hydrological Processes, 20, 2271–2283. https://doi.org/10.1002/hyp.5990

Ramos, M. C., Jones, G. V, & Martínez‐Casasnovas, J. A. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research, 38, 1–15. https://doi.org/10.3354/cr00759

Ramos, M. C., & Martínez‐Casasnovas, J. A. (2010). Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agricultural Water Management, 97, 1495–1505. https://doi.org/10.1016/j.agwat.2010.05.003

Smart, D R., Schwass, E., Lakso, A., & Morano, L. (2006). Grapevine rooting patterns: A comprehensive analysis and a review. American Journal of Enology and Viticulture, 57, 89–104.

Abril, M., Negueruela, A., Perez, C., Juan, T., & Estopanan, G. (2005). Preliminary study of resveratrol content in Aragón red and rosé wines. Food Chemistry, 92, 729–736. https://doi.org/10.1016/j.foodchem.2004.08.034

Fragoso, S., Aceña, L., Guasch, J., Mestres, M., & Busto, O. (2011). Quantification of phenolic compounds during red winemaking using FT‐MIR spectroscopy and PLS‐regression. Journal of Agricultural and Food Chemistry, 59, 10795–10802. https://doi.org/10.1021/jf201973e

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627. https://doi.org/10.1126/science.1097396

Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 815–830. https://doi.org/10.1098/rstb.2007.2185

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...