The role of ceramides in skin barrier function and the importance of their correct formulation for skincare applications
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Evonik Operations GmbH
PubMed
39113291
DOI
10.1111/ics.12972
Knihovny.cz E-zdroje
- Klíčová slova
- ceramides, emulsion, formulation, skin barrier, skin physiology/structure, topical application,
- MeSH
- ceramidy * chemie MeSH
- kůže * metabolismus MeSH
- lidé MeSH
- péče o kůži * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ceramidy * MeSH
Ceramides are a family of lipids constituted by a sphingoid base and a fatty acid. In the skin, they are mainly present in the stratum corneum where, with cholesterol and free fatty acids, they constitute the inter-corneocyte lipids. With the other lipid groups, they play a key role in the formation of dense lamellar structures between adjacent corneocytes, collectively ensuring the vital efficient barrier to water evaporation and protection from foreign agents´ penetration. Changes in ceramide level and relative composition, with potential impairment of lipid arrangement, have been evidenced in different skin conditions and skin diseases. Therefore, use of suitably formulated ceramides has been proposed for topical treatment to help re-structure damaged lipid arrangement and repair impaired skin barrier function. Nonetheless, the formulation of ceramides in products necessitates specific processes such as heating to high temperature before their introduction in the final formula. In this review on the structure, the role and the potential of ceramides for skincare, we point out the necessity of rigorous process when formulating ceramides into the final product. We demonstrate the counterproductive effects of undissolved ceramides on skin barrier repair capacity of the formulas, when assessed in different in vitro models of disrupted skin barrier.
Les céramides sont une famille de lipides constituée d'une base sphingoïde et d'un acide gras. Dans la peau, ils sont principalement présents dans la couche cornée où, avec le cholestérol et les acides gras libres, ils constituent les lipides inter‐cornéocytes. Avec les autres groupes de lipides, ils jouent un rôle clé dans la formation de structures lamellaires denses entre les cornéocytes adjacents, assurant collectivement la barrière efficace vitale contre l'évaporation de l'eau et la protection contre la pénétration des agents étrangers. Des modifications du taux de céramides et de la composition relative, avec une altération potentielle de l'arrangement lipidique, ont été observées dans différentes affections cutanées et maladies cutanées. Par conséquent, l'utilisation de céramides formulés de manière appropriée a été proposée pour un traitement topique afin d'aider à restructurer la disposition des lipides endommagés et à réparer la fonction de barrière cutanée altérée. Néanmoins, la formulation des céramides dans les produits nécessite des processus spécifiques tels que le chauffage à température élevée avant leur introduction dans la formule finale. Dans cette revue sur la structure, le rôle et le potentiel des céramides pour les soins de la peau, nous soulignons la nécessité d'un processus rigoureux lors de la formulation des céramides dans le produit final. Nous démontrons les effets contre‐productifs des céramides non dissous sur la capacité de réparation de la barrière cutanée des formules, lorsqu'ils sont évalués dans différents modèles in vitro de barrière cutanée perturbée.
Zobrazit více v PubMed
Benson HAE. Skin structure, function, and permeation. In Top Transdermal Drug Deliv. 1st ed. Hoboken, New Jersey: Wiley; 2012. p. 1–22.
Antunes E, Cavaco‐Paulo A. Stratum corneum lipid matrix with unusual packing: a molecular dynamics study. Colloids Surf B Biointerfaces. 2020;190:110928.
Iwai I, Han H, Hollander LD, Svensson S, Öfverstedt LG, Anwar J, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J Invest Dermatol. 2012;132:2215–2225.
Ishida‐Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol. 2018;27:841–846.
Voegeli R, Rawling AV. Moisturizing at the molecular level. Int J Cosmet Sci. 2023;45(2):133–154.
Talreja P, Kleene NK, Pickens WL, Wang TF, Kasting GB. Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. AAPS PharmSci. 2001;3:E13–E56.
Elias PM. Epidermal lipids, membranes, and keratinization. Int J Dermatol. 1981;20:1–19.
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta—Mol Cell Biol. 2014;1841:280–294.
Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, et al. Human stratum corneum lipids: characterization and regional variations. J Lipid Res. 1983;24:120–130.
Bouwstra JA, Nadaban A, Bras W, Mc Cabe C, Bunge A, Gooris GS. The skin barrier: an extraordinary interface with an exceptional lipid organization. Prog Lipid Res. 2023;92:101252.
Draelos ZD. New treatments for restoring impaired epidermal barrier permeability: skin barrier repair creams. Clin Dermatol. 2012;30:345–348.
Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, et al. Characterization of overall ceramide species in human stratum corneum. J Lipid Res. 2008;49:1466–1476.
Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182(2):147–151.
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS[S]. J Lipid Res. 2020;61:884–895.
t'Kindt R, Jorge L, Dumont E, Couturon P, David F, Sandra P, et al. Profiling and characterizing skin ceramides using reversed‐phase liquid chromatography–quadrupole time‐of‐flight mass spectrometry. Anal Chem. 2012;84:403–411.
Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456–5466.
Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784–790.
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res. 2016;63:50–69.
Li Q, Fang H, Dang E, Wang G. The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci. 2020;97(1):2–8.
Farwanah H, Wohlrab J, Neubert RHH, Raith K. Profiling of human stratum corneum ceramides by means of normal phase LC/APCI–MS. Anal Bioanal Chem. 2005;383:632–637.
Bouwstra JA, Gooris GS, Dubbelaar FER, Weerheim AM, Ijzerman AP, Ponec M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res. 1998;39:186–196.
Elias PM, Gruber R, Crumrine D, Menon G, Williams ML, Wakefield JS, et al. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta—Mol Cell Biol. 2014;1841:314–318.
Uchida Y, Holleran WM. Omega‐O‐acylceramide, a lipid essential for mammalian survival. J Dermatol Sci. 2008;51:77–87.
Fujii M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells. 2021;10(9):2386.
Van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS‐platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta. 2014;1841(1):70–79.
Van Smeden J, Janssens M, Kaye EC, Caspers PJ, Lavrijsen AP, Vreeken RJ, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014;23(1):45–52.
Merleev AA, Le ST, Alexanian C, Touss A, Xie Y, Marusina A, et al. Biogeographic and disease‐specific alterations in epidermal lipid composition and single‐cell analysis of acral keratinocytes. JCI Insight. 2022;7(16):e159762.
Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–1072.
Krieg P, Furstenberger G. The role of lipoxygenases in epidermis. Biochim Biophys Acta. 2014;1841(3):390–400.
Tyrrell VJ, Ali F, Boeglin WE, Andrews R, Burston J, Birchall JC, et al. Lipidomic and transcriptional analysis of the linoleoylomega‐hydroxyceramide biosynthetic pathway in human psoriatic lesions. J Lipid Res. 2021;62:100094.
Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM. Omegahydroxyceramides are required for corneocyte lipid envelope (CLE) formation and normal epidermal permeability barrier function. J Invest Dermatol. 2000;114(1):185–192.
Epp N, Furstenberger G, Muller K, de Juanes S, Leitges M, Hausser I, et al. 12R‐lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol. 2007;177(1):173–182.
Krieg P, Rosenberger S, de Juanes S, Latzko S, Hou J, Dick A, et al. Aloxe3 knockout mice reveal a function of epidermal lipoxygenase‐3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol. 2013;133(1):172–180.
Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small‐angle X‐ray scattering. J Invest Dermatol. 1991;97:1005–1012.
White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X‐ray diffraction study. Biochemistry. 1988;27:3725–3732.
Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol. 1987;88(6):714–718.
de Jager M, Groenink W, Guivernau RBJ, Andersson E, Angelova N, Ponec M, et al. Novel in vitro percutaneous penetration model: evaluation of barrier properties with p‐amino‐benzoic acid and two of its derivatives. Pharm Res. 2006;23(5):951–960.
Opálka L, Kováčik A, Maixner J, Vávrová K. Omega‐O‐Acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 2016;32(48):12894–12904.
Groen G, Poole DS, Gooris GS, Bouwstra JA. Is orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function? Biochem Biophys Acta. 2011;1808(6):1529–1537.
Uche LE, Gooris GS, Beddoes CM, Bouwstra JA. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. Biochim Biophys Acta. 2019;1861(7):1317–1328.
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. Barrier capability of skin lipid models: effect of ceramides and free fatty acid composition. Langmuir. 2019;35(47):15376–15388.
Norlén L, Lundborg M, Wennberg C, Narangifard A, Daneholt B. The Skin's barrier: a Cryo‐EM based overview of its architecture and stepwise formation. J Invest Dermatol. 2022;142(2):285–292.
Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M. Phase behavior of isolated skin lipids. J Lipid Res. 1996;37(5):999–1011.
Bouwstra JA, Gooris GS, Dubbelaar FER, Weerheim AM, Ponec M. pH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. J Invest Dermatol. 1998;3(2):69–73.
Abraham W, Wertz PW, Downing DT. Effect of epidermal acylglucosylceramides and acylceramides on the morphology of liposomes prepared from stratum corneum lipids. Biochim Biophys Acta. 1988;939(2):403–408.
Bouwstra JA, Gooris GS, Dubbelaar FE, Weerheim AM, Ljzerman AP, Ponec M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res. 1998;39(1):186–196.
de Jager MW, Gooris GS, Ponec M, Bouwstra JA. Lipid mixtures prepared with well‐defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J Lipid Res. 2005;46(12):2649–2656.
Pullmannova P, Ermakova E, Kovacik A, Opalka L, Maixner J, Zbytovska J. Long and very long lamellar phases in model stratum corneum lipid membranes. J Lipid Res. 2019;60(5):963–971.
Mojumdar EH, Gooris GS, Groen D, Barlow DJ, Lawrence MJ, Demé B, et al. Stratum corneum lipid matrix: location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim Biophys Acta. 2016;1858(8):1926–1934.
Ishikawa J, Shimotoyodome Y, Ito S, Miyauchi Y, Fujimura T, Kitahara T, et al. Variations in the ceramide profile in different seasons and regions of the body contribute to stratum corneum functions. Arch Dermatol Res. 2013;305(2):151–162.
Rogers J, Harding C, Mayo A, Banks J, Rawlings A. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res. 1996;288(12):765–770.
Fujiwara A, Morifuji M, Kitade M, Kawahata K, Fukasawa T, Yamaji T, et al. Age‐related and seasonal changes in covalently bound ceramide content in forearm stratum corneum of Japanese subjects: determination of molecular species of ceramides. Arch Dermatol Res. 2018;310(9):729–735.
Pappas A, Kendall AC, Brownbridge LC, Batchvarova N, Nicolaou A. Seasonal changes in epidermal ceramides are linked to impaired barrier function in acne patients. Exp Dermatol. 2018;27(8):833–836.
Ghadially R, Brown BE, Sequeira‐Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–2290.
Mellody KT, Kendall AC, Wray JR, Foster AR, Langton AK, Costello P, et al. Influence of menopause and hormone replacement therapy on epidermal ageing and skin biomechanical function. J Eur Acad Dermatol Venereol. 2022;36(7):e576–e580.
Kendall AC, Pilkington SM, Wray JR, Newton VL, Griffiths CEM, Bell M, et al. Menopause induces changes to the stratum corneum ceramide profile, which are prevented by hormone replacement therapy. Sci Rep. 2022;12(1):21715.
Takagi Y, Nakagawa H, Kondo H, Takema Y, Imokawa G. Decreased levels of covalently bound ceramide are associated with ultraviolet B‐induced perturbation of the skin barrier. J Invest Dermatol. 2004;123(6):1102–1109.
Suárez‐Fariñas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I, et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127:954–964.e954.
Marenholz I, Nickel R, Rüschendorf R, Schulz FG, Esparza‐Gordillo J, Kerscher T, et al. Filaggrin loss‐of‐function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol. 2006;118(4):866–871.
Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta‐analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol. 2009;123(6):1361–1370.
Shen CP, Zhao MT, Jia ZX, Zhang JL, Jiao L, Ma L. Skin ceramide profile in children with atopic dermatitis. Dermatitis. 2018;29:219–222.
Ishikawa J, Narita H, Kondo N, Hotta M, Takagi Y, Masukawa Y, et al. Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol. 2010;130:2511–2514.
Bhattacharya N, Sato WJ, Kelly A, Ganguli‐Indra G, Indra AK. Epidermal lipids: key mediators of atopic dermatitis pathogenesis. Trends Mol Med. 2019;25:551–562.
van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol. 2016;49:8–26.
Boiten W, van Smeden J, Bouwstra JA. The cornified envelope‐bound ceramide fraction is altered in patients with atopic dermatitis. J Invest Dermatol. 2020;140(5):1097–1100.
Ito S, Ishikawa J, Naoe A, Yoshida H, Hachiya A, Fujimura T, et al. Ceramide synthase 4 is highly expressed in involved skin of patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2017;31(1):135–141.
Danso M, Boiten W, van Drongelen V, Gmelig Meijling K, Gooris G, El Ghalbzouri A. Altered expression of epidermal lipid bio‐synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88(1):57–66.
Beddoes CM, Rensen DE, Gooris GS, Malfois M, Bouwstra JA. The importance of free fatty chain length on the lipid organization in the long periodicity phase. Int J Mol Sci. 2021;22(7):3679.
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. Increased levels of short‐chain ceramides modify the lipid organization and reduce the lipid barrier of skin model membranes. Langmuir. 2021;37(31):9478–9489.
Kim D, Lee NR, Park S‐Y, Jun M, Lee K, Kim S, et al. As in atopic dermatitis, Nonlesional skin in allergic contact dermatitis displays abnormalities in barrier function and ceramide content. J Invest Dermatol. 2017;137:748–750.
Ewald DA, Malajian D, Krueger JG, Workman CT, Wang T, Tian S, et al. Meta‐analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genet. 2015;8:60.
Montero‐Vilchez T, Soler‐Góngora M, Martínez‐López A, Fernández‐González A, Buendía‐Eisman A, Molina‐Leyva A, et al. Epidermal barrier changes in patients with psoriasis: the role of phototherapy. Photodermatol Photoimmunol Photomed. 2021;37(4):229–285.
Motta S, Monti M, Sesana S. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch Dermatol. 1994;130:452–456.
Checa A, Xu N, Sar DG, Haeggström JZ, Ståhle M, Wheelock CE. Circulating levels of sphingosine‐1‐phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti‐TNF‐α treatment. Sci Rep. 2015;5:12017.
Moon S‐H, Kim J‐Y, Song E‐H, Shin M‐K, Cho Y‐H, Kim N‐I. Altered levels of sphingosine and Sphinganine in psoriatic epidermis. Ann Dermatol. 2013;25:321–326.
Nakajima K, Terao M, Takaishi M. Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. J Invest Dermatol. 2013;133(11):2555–2565.
Tawada C, Kanoh H, Nakamura M, Mizutani Y, Fujisawa T, Banno Y, et al. Interferon‐γ decreases ceramides with long‐chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J Invest Dermatol. 2014;134(3):712–718.
Elias PM, Wakefield JS, Man M‐Q. Moisturizers versus current and next‐generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol Physiol. 2018;32:1–7.
Nakaune‐Iijimaa A, Sugishimab A, Omurab G, Kitaokaa H, Tashiroa T, Kageyamaa S, et al. Topical treatments with acylceramide dispersions restored stratum corneum lipid lamellar structures in a reconstructed human epidermis model. Chem Phys Lipids. 2018;215:56–62.
Berkers T, Visscher D, Gooris GS, Bouwstra JA. Topically applied ceramides interact with the stratum corneum lipid matrix in compromised ex vivo skin. Pharm Res. 2018;35(3):48.
Oh MJ, Nam JJ, Lee EO, Kim JW, Park CS. A synthetic C16 omega‐hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions. Arch Dermatol Res. 2016;308(8):563–574.
Čuříková‐Kindlová BA, Vovesná A, Nováčková A, Zbytovská J. In vitro modeling of skin barrier disruption and its recovery by ceramide‐based formulations. AAPS PharmSciTech. 2021;23(1):21.
Kucharekova M, Schalkwijk J, Van De Kerkhof PCM, Van De Valk PGM. Effect of a lipid‐rich emollient containing ceramide 3 in experimentally induced skin barrier dysfunction. Contact Derm. 2002;46(6):331–338.
Lueangarun S, Tragulplaingam P, Sugkraroek S, Tempark T. The 24‐hr, 28‐day, and 7‐day post‐moisturizing efficacy of ceramides 1, 3, 6‐II containing moisturizing cream compared with hydrophilic cream on skin dryness and barrier disruption in senile xerosis treatment. Dermatol Ther. 2019;32(6):e13090.
Yang Q, Liu M, Li X, Zheng L. The benefit of a ceramide‐linoleic acid‐containing moisturizer as an adjunctive therapy for a set of xerotic dermatoses. Dermatol Ther. 2019;32(4):e13017.
Liu M, Li X, Chen XY, Xue F, Zheng J. Topical application of a linoleic acid‐ceramide containing moisturizer exhibits therapeutic and preventive benefits for psoriasis vulgaris: a randomized controlled trial. Dermatol Ther. 2015;28(6):373–382.
Zbytovská J, Kiselev MA, Funari SS, Garamus VM, Wartewig S, Palát K, et al. Influence of cholesterol on the structure of stratum corneum lipid model membrane. Col Surf A. 2008;328:90–99.
Kahraman E, Kaykın M, Bektay HS, Güngör S. Recent advances on topical application of ceramides to restore barrier function of skin. Cosmetics. 2019;6(52):1–11.
Schiemann Y, Wegmann M, Lersch P, Heisler E, Farwick M. Polar emollients in cosmetic formulations enhance the penetration and biological effects of phytosphingosine on skin. Col Surf A. 2008;331:103–107.
Vovesna A, Zhigunov A, Balouch M, Zbytovska J. Ceramide liposomes for skin barrier recovery: a novel formulation based on natural skin lipids. Int J Pharm. 2021;596:120264.
Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, et al. Increase in short‐chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res. 2012;53(12):2755–2766.
Oh MJ, Cho YH, Ch SY, Lee EO, Kim JW, Kim SK, et al. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18‐ceramide N‐stearoyl phytosphingosine to improve the physiological properties of human stratum corneum. Clin Cosmet Investig Dermatol. 2017;13(10):363–371.