• This record comes from PubMed

Two new species of Dulcicalothrix (Nostocales, Cyanobacteria) from India and erection of Brunnivagina gen. nov., with observations on the problem of using multiple ribosomal operons in cyanobacterial taxonomy

. 2024 Oct ; 60 (5) : 1139-1160. [epub] 20240808

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
CRG/2018/004111 Department of Science and Technology (DST-SERB) India
22-06374S Grantová Agentura České Republiky

Two new species of Dulcicalothrix, D. adhikaryi sp. nov. and D. iyengarii sp. nov., were discovered in India and are characterized and described in accordance with the rules of the International Code of Nomenclature for algae, fungi, and plants (ICN). As a result of phylogenetic analysis, Calothrix elsteri is reassigned to Brunnivagina gen. nov. During comparison with all Dulcicalothrix for which sequence data were available, we observed that the genus has six ribosomal operons in three orthologous types. Each of the three orthologs could be identified based upon indels occurring in the D1-D1' helix sequence in the ITS rRNA region between the 16S and 23S rRNA genes, and in these three types, there were operons containing ITS rRNA regions with and without tRNA genes. Examination of complete genomes in Dulcicalothrix revealed that, at least in the three strains for which complete genomes are available, there are five ribosomal operons, two with tRNA genes and three with no tRNA genes in the ITS rRNA region. Internal transcribed spacer rRNA regions have been consistently used to differentiate species, both on the basis of secondary structure and percent dissimilarity. Our findings call into question the use of ITS rRNA regions to differentiate species in the absence of efforts to obtain multiple operons of the ITS rRNA region through cloning or targeted PCR amplicons. The ITS rRNA region data for Dulcicalothrix is woefully incomplete, but we provide herein a means for dealing with incomplete data using the polyphasic approach to analyze diverse molecular character sets. Caution is urged in using ITS rRNA data, but a way forward through the complexity is also proposed.

See more in PubMed

Becerra‐Absalón, I., Johansen, J. R., Muñoz‐Martin, M. A., & Montejano, G. (2018). Chroakolemma gen. nov. (Leptolyngbyaceae, Cyanobacteria) from soil biocrusts in the semi‐desert Central Region of Mexico. Phytotaxa, 367, 201–218. https://doi.org/10.11646/phytotaxa.367.3.1

Becerra‐Absalón, I., Johansen, J. R., Osorio‐Santos, K., & Montejano, G. (2020). Two new Oculatella (Oculatellaceae, Cyanobacteria) species in soil crusts from tropical semi–arid uplands of México. Fottea, 20, 160–170. https://doi.org/10.5507/fot.2020.010

Berrendero, E., Johansen, J. R., Kaštovský, J., Bohunická, M., & Čapková, K. (2016). Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. Journal of Phycology, 52, 638–655. https://doi.org/10.1111/jpy.12425

Bohunická, M., Johansen, J. R., Villanueva, C. D., Mareš, J., Štenclová, L., Becerra‐Absalón, I., Hauer, T., & Kaštovský, J. (2024). Revision of the pantropical genus Brasilonema (Nostocales, Cyanobacteria), with the description of 24 species new to science. Fottea, 24(2), 137–184. https://doi.org/10.5507/fot.2024.002

Bornet, É., & Flahault, C. (1886). Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France [Revision of the heterocystous Nostocaceae contained in the main herbaria of France]. Annales Des Sciences Naturelles, Botanique, Septième série, 3, 323–381.

Boyer, S. L., Flechtner, V. F., & Johansen, J. R. (2001). Is the 16S‐23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution, 18, 1057–1069. https://doi.org/10.1093/oxfordjournals.molbev.a003877

Boyer, S. L., Johansen, J. R., Flechtner, V. R., & Howard, G. L. (2002). Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S‐23S ITS region. Journal of Phycology, 38, 1222–1235. https://doi.org/10.1046/j.1529‐8817.2002.01168.x

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). JModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88. https://doi.org/10.1371/journal.pbio.0040088

Flechtner, V. R., Boyer, S. L., Johansen, J. R., & DeNoble, M. L. (2002). Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils. Nova Hedwigia, 74, 1–24. https://doi.org/10.1127/0029‐5035/2002/0074‐0001

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 157–511. https://doi.org/10.1214/ss/1177011136

Heidari, F., Zima, J., Jr., Riahi, H., & Hauer, T. (2018). New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea, 18(2), 137–149. https://doi.org/10.5507/fot.2017.024

Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Fiore, M. F., Rigonato, J., Sant'Anna, C. L., & Komárek, J. (2016). Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa, 245(2), 129–143. https://doi.org/10.11646/phytotaxa.245.2.4

Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Rigonato, J., Fiore, M. F., & Sant'Anna, C. L. (2017). Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): A new subaerial taxon from the Atlantic rainforest and Kauai, Hawaii. Fottea, 17, 178–190. https://doi.org/10.5507/fot.2017.002

Johansen, J. R., Bohunická, M., Lukešová, A., Hrčková, K. K., Vaccarino, M. A., & Chesarino, N. M. (2014). Morphological and molecular characterization within 26 strains of the genus Cylindrospermum (Nostocaceae, Cyanobacteria), with descriptions of three new species. Journal of Phycology, 50, 187–202. https://doi.org/10.1111/jpy.12150

Johansen, J. R., & Casamatta, D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, 116, 71–93. https://doi.org/10.1127/1864‐1318/2005/0117‐0071

Johansen, J. R., Kovacik, L., Casamatta, D. A., Fučíková, K., & Kaštovský, J. (2011). Utility of 16S‐23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia, 92, 283–302. https://doi.org/10.1127/0029‐5035/2011/0092‐0283

Johansen, J. R., Mareš, J., Pietrasiak, N., Bohunická, M., Zima, J., Štenclová, L., & Hauer, T. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS ONE, 12(10), e0186393. https://doi.org/10.1371/journal.pone.0186393

Johansen, J. R., Olsen, C. E., Lowe, R. L., Fučíková, K., & Casamatta, D. A. (2008). Leptolyngbya species from selected seep walls in the great smoky mountains national park. Algological Studies, 126, 21–36. https://doi.org/10.1127/1864‐1318/2008/0126‐0021

Jung, P., Mikhailyuk, T., Emrich, D., Baumann, K., Dultz, S., & Büdel, B. (2020). Shifting boundaries: Ecological and geographical range extension based on three new species in the cyanobacterial genera Cyanocohniella, Oculatella, and Aliterella. Journal of Phycology, 56, 1216–1231. https://doi.org/10.1111/jpy.13025

Jusko, B. M., & Johansen, J. R. (2023). Description of six new cyanobacterial species from soil biocrusts on San Nicolas Island, California, in three genera previously restricted to Brazil. Journal of Phycology, 60, 133–151. https://doi.org/10.1111/jpy.13411

Kaštovský, J., Johansen, J. R., Hauerová, R., & Akagha, M. U. (2023). Hot is rich—An enormous diversity of simple trichal cyanobacteria from Yellowstone hot springs. Diversity, 15, 975. https://doi.org/10.3390/d15090975

Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295–335.

Komárek, J., Nedbalová, L., & Hauer, T. (2012). Phylogenetic position and taxonomy of three heterocytous cyanobacteria dominating the littoral of deglaciated lakes, James Ross Island, Antarctica. Polar Biology, 35, 759–774. https://doi.org/10.1007/s00300‐011‐1123‐x

Kumar, N., Saraf, A., Pal, S., Mishra, D., & Singh, P. (2022). Insights into the phylogenetic inconsistencies of the genus Amazonocrinis and description of epilithic Amazonocrinis malviyae sp. nov. (Cyanobacteria, Nostocales) from Jammu and Kashmir, India. International Journal of Systematic and Evolutionary Microbiology, 72, e005658. https://doi.org/10.1099/ijsem.0.005658

Kumar, N., Saraf, A., Pal, S., Mishra, D., Singh, P., & Johansen, J. R. (2022). Circumscription of Fulbrightiella gen. nov. and Sherwoodiella gen. nov., two novel genera in the Calotrichaceae (Nostocales, Cyanobacteria). Journal of Phycology, 59, 204–220. https://doi.org/10.1111/jpy.13297

Luz, R., Cordiero, R., Kaštovský, J., Johansen, J. R., Dias, E., Fonseca, A., Urbatzka, R., & Vasconcelos, V. (2023). Description of four new taxa of filamentous cyanobacteria from freshwater habitats from the Azores archipelago. Journal of Phycology, 59, 1323–1338. https://doi.org/10.1111/jpy.13396

Luz, R., Cordiero, R., Kaštovský, J., Johansen, J. R., Dias, E., Fonseca, A., Urbatzka, R., Vasconcelos, V., & Gonçalves, V. (2023). New cyanobacteria from terrestrial habitats in the Azores islands. Phycologia, 62, 483–498. https://doi.org/10.1080/00318884.2023.2259243

Mai, T., Johansen, J. R., Pietrasiak, N., Bohunická, M., & Martin, M. P. (2018). Revision of the Synechococcales (cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa, 325(1), 1–59. https://doi.org/10.11646/phytotaxa.365.1.1

Martins, M. D., Machado‐de‐Lima, N. M., & Branco, H. Z. B. (2019). Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). Journal of Phycology, 55, 146–159. https://doi.org/10.1111/jpy.12805

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE 2010) (pp. 45–52). Institute of Electrical and Electronics Engeineers. https://doi.org/10.1109/GCE.2010.5676129

Nübel, U., Garcia‐Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63, 3327–3332. https://doi.org/10.1128/aem.63.8.3327‐3332.1997

Osorio‐Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L., Kovacik, L., Martin, M. P., & Johansen, J. R. (2014). Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. European Journal of Phycology, 49, 450–470. https://doi.org/10.1080/09670262.2014.976843

Pietrasiak, N., Mühlsteinová, R., Siegesmund, M., & Johansen, J. R. (2014). Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanobacteria) with description of two new species: S. Flechtnerae and S. Torsivum. Phycologia, 53, 529–541. https://doi.org/10.2216/14‐029.1

Pietrasiak, N., Osorio‐Santos, K., Lipson, D. L., & Johansen, J. R. (2021). Trichotorquatus gen. nov. – a new genus of soil cyanobacteria discovered from American drylands. Journal of Phycology, 57, 886–902. https://doi.org/10.1111/jpy.13147

Pietrasiak, N., Osorio‐Santos, K., Shalygin, S., Martin, M. P., & Johansen, J. R. (2019). When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology, 55, 976–996. https://doi.org/10.1111/jpy.12897

Rambaut, A. (2009). FigTree, version.1.4.3. [Computer software]. http://tree.bio.ed.ac.uk/software/figtree

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure culture of cyanobacteria. Journal of General Microbiology, 111, 1–61. https://doi.org/10.1099/00221287‐111‐1‐1

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Saraf, A., Dawda, H. G., Suradkar, A., Agre, V., & Singh, P. (2020). Fortiea necridiiformans sp. nov., a soil‐dwelling cyanobacterium from Pachmarhi biosphere reserve, India. International Journal of Systematic and Evolutionary Microbiology, 70, 4714–4724. https://doi.org/10.1099/ijsem.0.004337

Saraf, A., Suradkar, A., Dawda, H. G., Gaysina, L. A., Gabidullin, Y., Kumat, A., Behere, I., Kotulkar, M., Batule, P., & Singh, P. (2019). Phylogenetic complexities of the members of the family Rivulariaceae with the re‐creation of the family Calotrichaceae and description of Dulcicalothrix necridiiformans gen. nov., sp. nov., and reclassification of Calothrix desertica. FEMS Microbiology Letters, 366, fnz219. https://doi.org/10.1093/femsle/fnz219

Saraf, A. G., Dawda, H. G., & Singh, P. (2019). Desikacharya gen. nov., a phylogenetically distinct genus of cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of nostoc thermotolerans to Desikacharya thermotolerans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 69, 307–315. https://doi.org/10.1099/ijsem.0.003093

Vázquez‐Martínez, J., Gutierrez‐Villagomez, J. M., Fonesca‐García, C., Ramírez‐Chávez, E., Mondragón‐Sánchez, M. L., Partida‐Martínez, L., Johansen, J. R., & Molina‐Torres, J. (2018). Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa, 334(2), 167–182.

Willmotte, A., Auwera, G. V. D., & Watcher, R. D. (1993). Structure of the 16S rRNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Letters, 317, 96–100. https://doi.org/10.1016/0014‐5793(93)81499‐P

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.‐H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló‐Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12, 635–645. https://doi.org/10.1038/nrmicro3330

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415. https://doi.org/10.1093/nar/gkg595

See more in PubMed

RefSeq
OK138871, OK138873, OK257844, GCC20247, GCC20248, OK138872, MT488196, MT488209, MT488217, AF236642, FJ661020, MN699469, AP025018, EU009152, FJ661016, HF678479, MT708215, KY863521, KT336446, KT336448, KT336447, HQ847580, KY563666, KY488001, AP018255, AP018290, HQ847571, RSCL01000108, HQ847573, OR126988, HQ847579, HQ847572, FJ661010-17, AP02518

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...