How inquilinism shaped breeding systems in a termite host-inquiline relationship
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2.5020.11
Fonds de la Recherche Scientifique - FNRS
J0180.20
Fonds de la Recherche Scientifique - FNRS
Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
PubMed
39136107
DOI
10.1111/mec.17494
Knihovny.cz E-zdroje
- Klíčová slova
- Isoptera, Termitidae, breeding systems, inquilinism, microsatellite, reproductive strategies,
- MeSH
- hnízdění MeSH
- Isoptera * genetika MeSH
- mikrosatelitní repetice * genetika MeSH
- partenogeneze * genetika MeSH
- rozmnožování genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Social insects have developed a broad diversity of nesting and foraging strategies. One of these, inquilinism, occurs when one species (the inquiline) inhabits the nest built and occupied by another species (the host). Obligatory inquilines must overcome strong constraints upon colony foundation and development, due to limited availability of host colonies. To reveal how inquilinism shapes reproductive strategies in a termite host-inquiline dyad, we carried out a microsatellite marker study on Inquilinitermes inquilinus and its host Constrictotermes cavifrons. The proportion of simple, extended and mixed families was recorded in both species, as well as the presence of neotenics, parthenogenesis and multiple foundations. Most host colonies (95%) were simple families and all were monodomous. By contrast, the inquiline showed a higher proportion of extended (30%) and mixed (5%) families, and frequent neotenics (in 25% of the nests). This results from the simultaneous foundation in host nests of numerous incipient colonies, which, as they grow, may compete, fight, or merge. We also documented the use of parthenogenesis by female-female pairs. In conclusion, the classical monogamous colony pattern of the host species suggests uneventful development of simple foundations dispersed in the environment, in accordance with the wide distribution of their resources. By contrast, the multiple reproductive patterns displayed by the inquiline species reveal strong constraints on foundation sites: founders first concentrate into host nests, then must attempt to outcompete or absorb the neighbouring foundations to gain full control of the resources provided by the host nest.
Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Zobrazit více v PubMed
Adams, R. M. M., & Longino, J. T. (2007). Nesting biology of the arboreal fungus‐growing ant Cyphomyrmex cornutus and behavioral interactions with the social‐parasitic ant Megalomyrmex mondabora. Insectes Sociaux, 54(2), 136–143. https://doi.org/10.1007/s00040‐007‐0922‐0
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bathellier, J. (1927). Contribution à l'étude systématique et biologie des termites de l'Indochine. Faune des Colonies Françaises, 1, 1–247.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57, 289–300.
Blacket, M. J., Robin, C., Good, R. T., Lee, S. F., & Miller, A. D. (2012). Universal primers for fluorescent labelling of PCR fragments an efficient and cost‐effective approach to genotyping by fluorescence. Molecular Ecology Resources, 12(3), 456–463. https://doi.org/10.1111/j.1755‐0998.2011.03104.x
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bourguignon, T., Leponce, M., & Roisin, Y. (2009). Insights into the termite assemblage of a neotropical rainforest from the spatio‐temporal distribution of flying alates. Insect Conservation and Diversity, 2(3), 153–162. https://doi.org/10.1111/j.1752‐4598.2009.00055.x
Bourguignon, T., Šobotník, J., Lepoint, G., Martin, J.‐M., Hardy, O. J., Dejean, A., & Roisin, Y. (2011). Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology, 36(2), 261–269. https://doi.org/10.1111/j.1365‐2311.2011.01265.x
Bulmer, M. S., & Traniello, J. F. A. (2002). Lack of aggression and spatial association of colony members in Reticulitermes flavipes. Journal of Insect Behavior, 15(1), 121–126. https://doi.org/10.1023/A:1014440414618
Buschinger, A. (1979). Functional monogyny in the American guest ant Formicoxenus hirticornis (Emery) (= Leptothorax hirticornis), (Hym., F:orm.). Insectes Sociaux, 26(1), 61–68. https://doi.org/10.1007/BF02283913
Calaby, J. H. (1956). The distribution and biology of the genus Ahamitermes (Isoptera). Australian Journal of Zoology, 4(2), 111–124. https://doi.org/10.1071/ZO9560111
Clément, J. L. (1986). Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): Geographic and seasonal variations. Sociobiology, 11(3), 311–323.
Collins, N. M. (1980). Inhabitation of epigeal termite (Isoptera) nests by secondary termites in Cameroun rain forest. Sociobiology, 5(1), 47–54.
Cristaldo, P. F., Rosa, C. S., Florencio, D. F., Marins, A., & DeSouza, O. (2012). Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insectes Sociaux, 59(4), 541–548. https://doi.org/10.1007/s00040‐012‐0249‐3
Cunha, H. F., Costa, D., Filho, K. D. E. S., Silva, L. O., & Brandão, D. (2003). Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera: Termitidae). Sociobiology, 42(3), 761–770.
Darlington, J. P. E. C. (1985). Multiple primary reproductives in the termite Macrotermes michaelseni (Sjöstedt). In J. A. L. Watson, B. M. Okot‐Kotber, & C. Noirot (Eds.), Caste differentiation in social insects (pp. 187–200). Pergamon. https://doi.org/10.1016/B978‐0‐08‐030783‐1.50018‐5
Darlington, J. P. E. C. (2012). Termites (Isoptera) as secondary occupants in mounds of Macrotermes michaelseni (Sjöstedt) in Kenya. Insectes Sociaux, 59(2), 159–165. https://doi.org/10.1007/s00040‐011‐0199‐1
DeHeer, C. J., & Vargo, E. L. (2004). Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Molecular Ecology, 13(2), 431–441. https://doi.org/10.1046/j.1365‐294X.2003.2065.x
Dejean, A., & Ruelle, J. E. (1995). Importance of Cubitermes termitaries as shelter for alien incipient termite societies. Insectes Sociaux, 42(2), 129–136. https://doi.org/10.1007/BF01242449
Diniz‐Filho, J. A. F., Soares, T. N., Lima, J. S., Dobrovolski, R., Landeiro, V. L., Telles, M. P. C., Rangel, T. F., & Bini, L. M. (2013). Mantel test in population genetics. Genetics and Molecular Biology, 36(4), 475–485. https://doi.org/10.1590/S1415‐47572013000400002
Earl, D., & Vonholdt, B. (2012). Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 1–3. https://doi.org/10.1007/s12686‐011‐9548‐7
Eggleton, P., & Bignell, D. E. (1995). Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest reserve, southern Cameroon, and its biological significance. Journal of African Zoology, 111(6), 489–498.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365‐294X.2005.02553.x
Florencio, D. F., Marins, A., Rosa, C. S., Cristaldo, P. F., Araújo, A. P. A., Silva, I. R., & DeSouza, O. (2013). Diet segregation between cohabiting builder and inquiline termite species. PLoS ONE, 8(6), e66535. https://doi.org/10.1371/journal.pone.0066535
Fougeyrollas, R., Dolejšová, K., Křivánek, J., Sillam‐Dussès, D., Roisin, Y., Hanus, R., & Roy, V. (2018). Dispersal and mating strategies in two neotropical soil‐feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insectes Sociaux, 65(2), 251–262. https://doi.org/10.1007/s00040‐018‐0606‐y
Fougeyrollas, R., Dolejšová, K., Sillam‐Dussès, D., Roy, V., Poteaux, C., Hanus, R., & Roisin, Y. (2015). Asexual queen succession in the higher termite Embiratermes neotenicus. Proceedings of the Royal Society B: Biological Sciences, 282(1809), 20150260. https://doi.org/10.1098/rspb.2015.0260
Fougeyrollas, R., Křivánek, J., Roy, V., Dolejšová, K., Frechault, S., Roisin, Y., Hanus, R., & Sillam‐Dussès, D. (2017). Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus. Molecular Ecology, 26(12), 3295–3308. https://doi.org/10.1111/mec.14095
Fournier, D., Hellemans, S., Hanus, R., & Roisin, Y. (2016). Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160196. https://doi.org/10.1098/rspb.2016.0196
Gay, F. J. (1966). A new genus of termites (Isoptera) from Australia. Australian Journal of Entomology, 5(1), 40–43. https://doi.org/10.1111/j.1440‐6055.1966.tb00676.x
Gergonne, D., Poteaux, C., Fourcade, Y., Fougeyrollas, R., Hanus, R., Sillam‐Dussès, D., & Roy, V. (2024). The role of changing landscape in the dispersal of a soil‐feeding termite in Suriname and French Guiana. Insect Conservation and Diversity. https://doi.org/10.1111/icad.12761
Goodisman, M. A. D., & Crozier, R. H. (2002). Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution, 56(1), 70–83. https://doi.org/10.1111/j.0014‐3820.2002.tb00850.x
Goudet, J., & Jombart, T. (2022). Hierfstat: Estimation and tests of hierarchical F‐statistics. R Package Version 0.5‐11. https://CRAN.R‐project.org/package=hierfstat
Heinze, J., Gübitz, T., Errard, C., Lenoir, A., & Hölldobler, B. (1993). Reproductive competition and colony fragmentation in the guest‐ant, Formicoxenus provancheri. Experientia, 49(9), 814–816. https://doi.org/10.1007/BF01923556
Hellemans, S., Dolejšová, K., Křivánek, J., Fournier, D., Hanus, R., & Roisin, Y. (2019). Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evolutionary Biology, 19(1), 131. https://doi.org/10.1186/s12862‐019‐1459‐3
Hellemans, S., Marynowska, M., Drouet, T., Lepoint, G., Fournier, D., Calusinska, M., & Roisin, Y. (2019). Nest composition, stable isotope ratios and microbiota unravel the feeding behaviour of an inquiline termite. Oecologia, 191(3), 541–553. https://doi.org/10.1007/s00442‐019‐04514‐w
Hölldobler, B., & Wilson, E. O. (1990). The ants. Harvard University Press.
Howard, K. J., Johns, P. M., Breisch, N. L., & Thorne, B. L. (2013). Frequent colony fusions provide opportunities for helpers to become reproductives in the termite Zootermopsis nevadensis. Behavioral Ecology and Sociobiology, 67(10), 1575–1585. https://doi.org/10.1007/s00265‐013‐1569‐7
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233
Jirošová, A., Sillam‐Dussès, D., Kyjaková, P., Kalinová, B., Dolejšová, K., Jančařík, A., Majer, P., Cristaldo, P. F., & Hanus, R. (2016). Smells like home: Chemically mediated co‐habitation of two termite species in a single nest. Journal of Chemical Ecology, 42(10), 1070–1081. https://doi.org/10.1007/s10886‐016‐0756‐1
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. https://CRAN.R‐project.org/package=factoextra
Kearse, M., Moir, R., Wilson, A., Stones‐Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kistner, D. H. (1979). Social and evolutionary significance of social insect symbionts. In H. R. Hermann (Ed.), Social insects (Vol. I, pp. 339–413). Academic Press.
Kistner, D. H. (1990). The integration of foreign insects into termite societies or why do termites tolerate foreign insects in their societies? Sociobiology, 17, 191–215
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755‐0998.12387
Lenoir, A., Errard, C., Francoeur, A., & Loiselle, R. (1992). Relations entre la fourmi parasite Formicoxenus provancheri et son hôte Myrmica incompleta. Données biologiques et éthologiques (Hym. Formicidae). Insectes Sociaux, 39(1), 81–97. https://doi.org/10.1007/BF01240533
Li, Y., & Liu, J. (2018). StructureSelector: A web‐based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176–177. https://doi.org/10.1111/1755‐0998.12719
Luchetti, A., Dedeine, F., Velonà, A., & Mantovani, B. (2013). Extreme genetic mixing within colonies of the wood‐dwelling termite Kalotermes flavicollis (Isoptera, Kalotermitidae). Molecular Ecology, 22(12), 3391–3402. https://doi.org/10.1111/mec.12302
Martius, C., Amelung, W., & Garcia, M. V. (2000). The Amazonian forest termite (Isoptera: Termitidae) (Constrictotermes cavifrons) feeds on microepiphytes. Sociobiology, 35(3), 379–383.
Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G., & Neufeld, J. D. (2012). PANDAseq: Paired‐end assembler for Illumina sequences. BMC Bioinformatics, 13(1), 31. https://doi.org/10.1186/1471‐2105‐13‐31
Matsuura, K., & Nishida, T. (2001a). Colony fusion in a termite: What makes the society “open”? Insectes Sociaux, 48(4), 378–383. https://doi.org/10.1007/PL00001795
Matsuura, K., & Nishida, T. (2001b). Comparison of colony foundation success between sexual pairs and female asexual units in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Population Ecology, 43(2), 119–124. https://doi.org/10.1007/PL00012022
Matsuura, K., Vargo, E. L., Kawatsu, K., Labadie, P. E., Nakano, H., Yashiro, T., & Tsuji, K. (2009). Queen succession through asexual reproduction in termites. Science, 323(5922), 1687. https://doi.org/10.1126/science.1169702
Meglécz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., & Martin, J.‐F. (2010). QDD: A user‐friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics, 26(3), 403–404. https://doi.org/10.1093/bioinformatics/btp670
Neoh, K.‐B., Indiran, Y., Lenz, M., & Lee, C.‐Y. (2012). Does lack of intraspecific aggression or absence of nymphs determine acceptance of foreign reproductives in Macrotermes? Insectes Sociaux, 59(2), 223–230. https://doi.org/10.1007/s00040‐011‐0207‐5
Noirot, C. (1955). Recherches sur le polymorphisme des termites supérieurs (Termitidae). Annales des Sciences Naturelles, Zoologie (11e Série), 17, 399–595.
Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in the social insects. Princeton University Press.
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Perdereau, E., Velonà, A., Dupont, S., Labédan, M., Luchetti, A., Mantovani, B., & Bagnères, A.‐G. (2013). Colony breeding structure of the invasive termite Reticulitermes urbis (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 106(5), 2216–2224. https://doi.org/10.1603/EC13157
Pew, J., Wang, J., Muir, P., & Frasier, T. (2015). Related: An R package for analyzing pairwise relatedness data based on codominant molecular markers. R Package Version 1.0.
QGIS Development Team. (2023). QGIS geographic information system. Open Source Geospatial Foundation Project.
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
Rodrigues, L. S. (2017). Diferenciação de castas em Inquilinitermes microcerus (Silvestri) Isoptera, Termitidae). Dissertation (Licenciatura). Universidade Federal da Campina Grande.
Roonwal, M. L. (1969). Measurements of termites (Isoptera) for taxonomic purposes. Journal of the Zoological Society of India, 21(1), 9–66.
Rosenberg, N. A. (2004). DISTRUCT: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137–138. https://doi.org/10.1046/j.1471‐8286.2003.00566.x
Shellman‐Reeve, J. S. (1997). The spectrum of eusociality in termites. In J. C. Choe & B. J. Crespi (Eds.), The evolution of social behavior in insects and arachnids (pp. 52–93). Cambridge University Press.
Silva, A. C. (2015). Diferenciação de castas em Inquilinitermes fur (Isoptera, Termitidae). Dissertation (Pós graduação), Universidade Federal da Paraíba.
Stuart, R. J. (2002). The behavioural ecology of social parasitism in ants. In E. E. Lewis, J. F. Campbell, & M. V. K. Sukhdeo (Eds.), The Behavioural ecology of parasites (pp. 315–336). CABI Publishing.
Tamaki, C., Takata, M., & Matsuura, K. (2021). The lose‐to‐win strategy of the weak: Intraspecific parasitism via egg abduction in a termite. Biology Letters, 17(12), 20210540. https://doi.org/10.1098/rsbl.2021.0540
Taylor, A. R., Jacob, P. E., Neafsey, D. E., & Buckee, C. O. (2019). Estimating relatedness between malaria parasites. Genetics, 212(4), 1337–1351. https://doi.org/10.1534/genetics.119.302120
Thorne, B. L. (1984). Polygyny in the Neotropical termite Nasutitermes corniger: Life history consequences of queen mutualism. Behavioral Ecology and Sociobiology, 14(2), 117–136. https://doi.org/10.1007/BF00291903
Thorne, B. L., Traniello, J. F. A., Adams, E. S., & Bulmer, M. (1999). Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): A review of the evidence from behavioral, ecological, and genetic studies. Ethology Ecology & Evolution, 11(2), 149–169. https://doi.org/10.1080/08927014.1999.9522833
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 63(2), 411–423.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO‐CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/10.1111/j.1471‐8286.2004.00684.x
Vargo, E. L., & Husseneder, C. (2009). Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annual Review of Entomology, 54(1), 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443
Vargo, E. L., Husseneder, C., & Grace, J. K. (2003). Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Molecular Ecology, 12(10), 2599–2608. https://doi.org/10.1046/j.1365‐294x.2003.01938.x
Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR‐based typing from forensic material. BioTechniques, 10(4), 506–513.
Wang, J. (2007). Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetical Research, 89(3), 135–153. https://doi.org/10.1017/S0016672307008798
Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302–313. https://doi.org/10.1038/hdy.2017.52
Yashiro, T., Lo, N., Kobayashi, K., Nozaki, T., Fuchikawa, T., Mizumoto, N., Namba, Y., & Matsuura, K. (2018). Loss of males from mixed‐sex societies in termites. BMC Biology, 16(1), 96. https://doi.org/10.1186/s12915‐018‐0563‐y
Zimet, M., & Stuart, A. M. (1982). Sexual dimorphism in the immature stages of the termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology, 7(1), 1–7.