Characterizing devices for validation of dose, dose rate, and LET in ultra high dose rate proton irradiations

. 2024 Nov ; 51 (11) : 8411-8422. [epub] 20240817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39153223

BACKGROUND: Ultra high dose rate (UHDR) radiotherapy using ridge filter is a new treatment modality known as conformal FLASH that, when optimized for dose, dose rate (DR), and linear energy transfer (LET), has the potential to reduce damage to healthy tissue without sacrificing tumor killing efficacy via the FLASH effect. PURPOSE: Clinical implementation of conformal FLASH proton therapy has been limited by quality assurance (QA) challenges, which include direct measurement of UHDR and LET. Voxel DR distributions and LET spectra at planning target margins are paramount to the DR/LET-related sparing of organs at risk. We hereby present a methodology to achieve experimental validation of these parameters. METHODS: Dose, DR, and LET were measured for a conformal FLASH treatment plan involving a 250-MeV proton beam and a 3D-printed ridge filter designed to uniformly irradiate a spherical target. We measured dose and DR simultaneously using a 4D multi-layer strip ionization chamber (MLSIC) under UHDR conditions. Additionally, we developed an "under-sample and recover (USRe)" technique for a high-resolution pixelated semiconductor detector, Timepix3, to avoid event pile-up and to correct measured LET at high-proton-flux locations without undesirable beam modifications. Confirmation of these measurements was done using a MatriXX PT detector and by Monte Carlo (MC) simulations. RESULTS: MC conformal FLASH computed doses had gamma passing rates of >95% (3 mm/3% criteria) when compared to MatriXX PT and MLSIC data. At the lateral margin, DR showed average agreement values within 0.3% of simulation at 100 Gy/s and fluctuations ∼10% at 15 Gy/s. LET spectra in the proximal, lateral, and distal margins had Bhattacharyya distances of <1.3%. CONCLUSION: Our measurements with the MLSIC and Timepix3 detectors shown that the DR distributions for UHDR scenarios and LET spectra using USRe are in agreement with simulations. These results demonstrate that the methodology presented here can be used effectively for the experimental validation and QA of FLASH treatment plans.

Zobrazit více v PubMed

Kim MM, Darafsheh A, Schuemann J, et al. Development of ultra‐high dose‐rate (FLASH) particle therapy. IEEE Trans Radiat Plasma Med Sci. 2022;6(3):252‐262. doi:10.1109/trpms.2021.3091406 Epub 2021 Jun 22 PMID: 36092270; PMCID: PMC9457346

Diffenderfer ES, Sørensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys. 2022;49(3):2039‐2054. doi:10.1002/mp.15276 Epub 2021 Oct 26. PMID: 34644403

Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose‐rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93. doi:10.1126/scitranslmed.3008973

Loo BW, Schuler E, Lartey FM, et al. Delivery of ultra‐rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice. Int J Radiat Oncol*Biol*Phys. 2017;98:E16. doi:10.1016/j.ijrobp.2017.02.101

Vozenin MC, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini‐pig and cat‐cancer patients. Clin Cancer Res. 2019;25(1):35‐42. doi:10.1158/1078‐0432.CCR‐17‐3375 Epub 2018 Jun 6 PMID: 29875213

Montay‐Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017;124(3):365‐369. doi:10.1016/j.radonc.2017.05.003 Epub 2017 May 22 PMID: 28545957

Jones, B. The influence of hypoxia on LET and RBE relationships with implications for ultra‐high dose rates and FLASH modelling. Phys Med Biol. 2022;67:125011. doi:10.1088/1361‐6560/ac6ebb

Zou W, Diffenderfer ES, Cengel KA, et al. Current delivery limitations of proton PBS for FLASH. Radiother Oncol. 2021;155:212‐218. doi:10.1016/j.radonc.2020.11.002

Kang M, Wei S, Choi JI, Lin H, Simone CB 2nd. A universal range shifter and range compensator can enable proton pencil beam scanning single‐energy Bragg peak FLASH‐RT treatment using current commercially available proton systems. Int J Radiat Oncol Biol Phys. 2022;113(1):203‐213. doi:10.1016/j.ijrobp.2022.01.009. Epub 2022 Jan 29. PMID: 35101597.

Charyyev S, Liu R, Yang X, et al. Measurement of the time structure of FLASH beams using prompt gamma rays and secondary neutrons as surrogates. Phys Med Biol. 2023. doi:10.1088/1361‐6560/acdc7c Epub ahead of print PMID: 37285847

Folkerts MM, Abel E, Busold S, et al. A framework for defining FLASH dose rate for pencil beam scanning. Med Phys. 2020;47(12):6396‐6404. doi:10.1002/mp.14456 Epub 2020 Nov 15 PMID: 32910460; PMCID: PMC7894358

Yang Y, Shi C, Chen CC, et al. A 2D strip ionization chamber array with high spatiotemporal resolution for proton pencil beam scanning FLASH radiotherapy. Med Phys. 2022;49(8):5464‐5475. doi:10.1002/mp.15706 Epub 2022 May 30 PMID: 35593052

Kanouta E, Poulsen PR, Kertzscher G, Sitarz MK, Sørensen BS, Johansen JG. Time‐resolved dose rate measurements in pencil beam scanning proton FLASH therapy with a fiber‐coupled scintillator detector system. Med Phys. 2023;50(4):2450‐2462. doi:10.1002/mp.16156 Epub 2022 Dec 29. PMID: 36508162

Zhou S, Rao W, Chen Q, et al. A multi‐layer strip ionization chamber (MLSIC) device for proton pencil beam scan quality assurance. Phys Med Biol. 2022;67(17). doi:10.1088/1361‐6560/ac8593 PMID: 35905730

Mascia AE, Daugherty EC, Zhang Y, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: the FAST‐01 nonrandomized trial. JAMA Oncol. 2023;9(1):62‐69. doi:10.1001/jamaoncol.2022.5843 PMID: 36273324; PMCID: PMC9589460

Bourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH‐radiotherapy. Radiother Oncol. 2019;139:18‐22. doi:10.1016/j.radonc.2019.06.019 Epub 2019 Jul 11 PMID: 31303340

Simeonov Y, Weber U, Penchev P, et al. 3D range‐modulator for scanned particle therapy: development, Monte Carlo simulations and experimental evaluation. Phys Med Biol. 2017;62(17):7075‐7096. doi:10.1088/1361‐6560/aa81f4 PMID: 28741595

Lin L, Kang M, Huang S, et al. Beam‐specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors. J Appl Clin Med Phys. 2015;16(6):5678. doi:10.1120/jacmp.v16i6.5678 PMID: 26699580; PMCID: PMC5691001

Charuchinda W, Horst F, Simeonov Y, et al. 3D range‐modulators for proton therapy: near field simulations with FLUKA and comparison with film measurements. J Phys: Conf Ser. 2023;2431:012081

Mayer R, Liacouras P, Thomas A, Kang M, Lin L, Simone CB 2nd. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci Instrum. 2015;86(7):074301. doi:10.1063/1.4923294 PMID: 26233396

Ramos‐Méndez J, Domínguez‐Kondo N, Schuemann J, et al. LET‐dependent intertrack yields in proton irradiation at ultra‐high dose rates relevant for FLASH therapy. Radiat Res. 2020;194(4):351‐362. doi:10.1667/RADE‐20‐00084.1 PMID: 32857855; PMCID: PMC7644138

Taylor PA, Moran JM, Jaffray DA, Buchsbaum JC. A roadmap to clinical trials for FLASH. Med Phys. 2022;49(6):4099‐4108. doi:10.1002/mp.15623 Epub 2022 Apr 25 PMID: 35366339; PMCID: PMC9321729

Gao H, Lin B, Lin Y, et al. Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy. Med Phys. 2020;47(12):6388‐6395. doi:10.1002/mp.14531 Epub 2020 Nov 8 PMID: 33068294

An Y, Shan J, Patel SH, et al. Robust intensity‐modulated proton therapy to reduce high linear energy transfer in organs at risk. Med Phys. 2017;44(12):6138‐6147. doi:10.1002/mp.12610 Epub 2017 Oct 26 PMID: 28976574; PMCID: PMC5734644

Liu R, Charyyev S, Wahl N, et al. An integrated physical optimization framework for proton stereotactic body radiation therapy FLASH treatment planning allows dose, dose rate, and linear energy transfer optimization using patient‐specific ridge filters. Int J Radiat Oncol Biol Phys. 2023;116(4):949‐959. doi:10.1016/j.ijrobp.2023.01.048 Epub ahead of print PMID: 36736634

Wieser HP, Cisternas E, Wahl N, et al. Development of the open source dose calculation and optimization toolkit matRad. Med Phys. 2017;44:2556‐2568.

Harrison N, Kang M, Liu R, et al. A novel inverse algorithm to solve the integrated optimization of dose, dose rate, and linear energy transfer of proton FLASH therapy with sparse filters. Int J Radiat Oncol Biol Phys. 2024;119(3):957‐967. doi:10.1016/j.ijrobp.2023.11.061 Epub 2023 Dec 16. PMID: 38104869

Stasica P, Nguyen H, Granja C, et al. Single proton LET characterization with the Timepix detector and artificial intelligence for advanced proton therapy treatment planning. Phys. Med. Biol. 2023;68:104001

Muñoz ID, GarcíaCalderón D, FelixBautista R, et al. Linear energy transfer measurements and estimation of relative biological effectiveness in proton and helium‐ion beams using fluorescent nuclear track detectors. Int J Radiat Oncol Biol Phys. 2024;120(1):P205‐215. doi:10.1016/j.ijrobp.2024.02.047 Epub ahead of print. PMID: 38437925

Paganetti H, Blakely E, Carabe‐Fernandez A, et al. Report of the AAPM TG‐256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46(3):e53‐e78. doi:10.1002/mp.13390 Epub 2019 Feb 14 PMID: 30661238; PMCID: PMC9559855

Granville DA, Sahoo N, Sawakuchi GO. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams. Phys Med Biol. 2016;61(4):1765‐1779. doi:10.1088/0031‐9155/61/4/1765 Epub 2016 Feb 9. PMID: 26859539

Christensen JB, Togno M, Nesteruk KP, et al. Al2O3:c optically stimulated luminescence dosimeters (OSLDs) for ultra‐high dose rate proton dosimetry. Phys Med Biol. 2021;66(8). doi:10.1088/1361‐6560/abe554 PMID: 33571973

Setianegara J, Mazur TR, Yang D, Li HH. Dual‐storage phosphor proton therapy dosimetry: simultaneous quantification of dose and linear energy transfer. Med Phys. 2021;48(4):1941‐1955. doi:10.1002/mp.14748 Epub 2021 Feb 19 PMID: 33525050; PMCID: PMC8058281

Granja, C, Kudela K, Jakubek J, et al. Directional detection of charged particles and cosmic rays with the miniaturized radiation camera MiniPIX Timepix. Nucl Instrum Methods Phys Res A: Accelerat Spectrometer Detect Associat Equipm. 2018;911:142‐152. doi:10.1016/j.nima.2018.09.140

Oancea C, Bălan C, Pivec J, et al. Stray radiation produced in FLASH electron beams characterized by the MiniPIX Timepix3 Flex detector. JINST. 2022;17:C01003. doi:10.1088/1748‐0221/17/01/C01003

Oancea C, Granja C, Marek L, et al. Out‐of‐field measurements and simulations of a proton pencil beam in a wide range of dose rates using a Timepix3 detector: dose rate, flux and LET. Phys Med. 2023;106:102529. doi:10.1016/j.ejmp.2023.102529 Epub 2023 Jan 17 PMID: 36657235

Nabha R, Van Hoey O, Granja C, et al. A novel method to assess the incident angle and the LET of protons using a compact single‐layer Timepix detector. Rad Phys Chem. 2022;199:110349.

Yap J, Bal N, Brooke M, Granja C, Kacperek A. Tracking and LET measurements with the MiniPIX‐TimePIX detector for 60 MeV clinical protons. In: Proceedings of IPAC2021. doi:10.18429/JACoW‐IPAC2021‐MOPAB418

Novak A, Granja C, Sagatova A, Zach V, Stursa J, Oancea C. Spectral tracking of proton beams by the Timepix3 detector with GaAs, CdTe and Si sensors. J Instrum. 2023;18(01):C01022‐C01022. doi:10.1088/1748‐0221/18/01/C01022

Llopart X, Ballabriga R, Campbell M, Tlustos L, Wong W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl Instrum Methods Phys Res. 2007;581:485‐494. doi:10.1016/j.nima.2007.08.079

Charyyev S, Chang CW, Harms J, et al. A novel proton counting detector and method for the validation of tissue and implant material maps for Monte Carlo dose calculation. Phys Med Biol. 2021;66(4):045003. doi:10.1088/1361‐6560/abd22e PMID: 33296888

Oancea C, Luu A, Ambrozova I, Mytsin G, Vondracek V, Davidkova M. Perturbations of radiation field caused by titanium dental implants in pencil proton beam therapy. Phys Med Biol. 2018;63(21):215020. doi:10.1088/1361‐6560/aae656 PMID: 30372419

Taddei PJ, Borak TB, Guetersloh SB, et al. The response of a spherical tissue‐equivalent proportional counter to different heavy ions having similar velocities. Radiat Meas. 2006;4179(9‐10):1227‐1234. doi:10.1016/j.radmeas.2006.01.003 PMID: 19079798; PMCID: PMC2600531

Samnoy A, Ytre‐Hauge K, Malinen E, et al. Microdosimetry with a 3D silicon on insulator (SOI) detector in a low energy proton beamline. Radiat Phys Chem. 2020;176:109078. doi:10.1016/j.radphyschem.2020.109078

Chang CW, Huang S, Harms J, et al. A standardized commissioning framework of Monte Carlo dose calculation algorithms for proton pencil beam scanning treatment planning systems. Med Phys. 2020;47(4):1545‐1557. doi:10.1002/mp.14021 Epub 2020 Feb 4 PMID: 31945191

Charyyev S, Chang CW, Zhu M, Lin L, Langen K, Dhabaan A. Characterization of 250 MeV protons from the varian ProBeam PBS system for FLASH radiation therapy. Int J Part Ther. 2023;9(4):279‐289. doi:10.14338/IJPT‐22‐00027.1 PMID: 37169007; PMCID: PMC10166018

Zhou S, Chen Q, Haefner J, et al. Proton 3D dose measurement with a multi‐layer strip ionization chamber (MLSIC) device. Phys Med Biol. 2024;69(13):135010. doi:10.1088/1361‐6560/ad550f

van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel WFAR. Bringing FLASH to the clinic: treatment planning considerations for ultrahigh dose‐rate proton beams. Int J Radiat Oncol Biol Phys. 2020;106(3):621‐629. doi:10.1016/j.ijrobp.2019.11.011 Epub 2019 Nov 20 PMID: 31759074

Lin L, Kang M, Solberg TD, et al. Use of a novel two‐dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance. J Appl Clin Med Phys. 2015;16(3):5323. doi:10.1120/jacmp.v16i3.5323 PMID: 26103492; PMCID: PMC5690130

Granja C, Oancea C, Jakubek J, et al. Wide‐range tracking and LET‐spectra of energetic light and heavy charged particles. Nucl Instrum Methods Phys Res A: Accel Spectrometers, Detect Assoc Equipment. 2021;988:164901. doi:10.1016/j.nima.2020.164901

Granja C, Jakubek J, Martisikova M, et al. Dynamic range and resolving power of the Timepix detector to heavy charged particles. JINST. 2018;13:C11003. doi:10.1088/1748‐0221/13/11/C11003

Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818‐6837. doi:10.1118/1.4758060 PMID: 23127075; PMCID: PMC3493036

Sechopoulos I, Rogers DWO, Bazalova‐Carter M, et al. RECORDS: improved reporting of montE CarlO RaDiation transport studies: report of the AAPM Research Committee Task Group 268. Med Phys. 2018;45(1):e1‐e5. doi:10.1002/mp.12702 Epub 2017 Dec 16. PMID: 29178605

Huang S, Kang M, Souris K, et al. Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy. J Appl Clin Med Phys. 2018;19(5):558‐572. doi:10.1002/acm2.12420 Epub 2018 Jul 30. PMID: 30058170; PMCID: PMC6123159

Charyyev S, Artz M, Szalkowski G, et al. Optimization of hexagonal‐pattern minibeams for spatially fractionated radiotherapy using proton beam scanning. Med Phys. 2020;47(8):3485‐3495. doi:10.1002/mp.14192 Epub 2020 May 11 PMID: 32319098

Walters BR, Kawrakow I, Rogers DW. History by history statistical estimators in the BEAM code system. Med Phys. 2002;29(12):2745‐2752. doi:10.1118/1.1517611 PMID: 12512706

Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Analyt Chem. 1964;36(8):1627‐1639 doi:10.1021/ac60214a047

Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656‐661. doi:10.1118/1.598248 PMID: 9608475

Ju T, Simpson T, Deasy JO, Low DA. Geometric interpretation of the gamma dose distribution comparison technique: interpolation‐free calculation. Med Phys. 2008;35(3):879‐887. doi:10.1118/1.2836952 PMID: 18404924

Lin L, Kang M, Solberg TD, Ainsley CG, McDonough JE. Experimentally validated pencil beam scanning source model in TOPAS. Phys Med Biol. 2014;59(22):6859‐6873. doi:10.1088/0031‐9155/59/22/6859 Epub 2014 Oct 28 PMID: 25349982

Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans Image Process. 2007;16(11):2787‐2801. doi:10.1109/tip.2007.908073 PMID: 17990755; PMCID: PMC3652018

Bi S, Broggi M, Beer M. The role of the Bhattacharyya distance in stochastic model updating. Mech Syst Signal Process. 2019;117:437‐452. doi:10.1016/j.ymssp.2018.08.017

Zhou S, Zhou T, Sun B, et al. First 3D dose and dose rate measurement of clinical FLASH‐RT beams with a novel multi‐layer strip ionization chamber device. Oral Presentation at PTCOG62 (FLASH Physics session); 2024.

Yang Y, Kang M, Chen CC, et al. Commissioning a 250 MeV research beamline for proton FLASH radiotherapy preclinical experiments. Med Phys. 2023. doi:10.1002/mp.16364 Epub ahead of print. PMID: 36932693

Liu Q, Schneider F, Ma L, Wenz F, Herskind C. Relative biologic effectiveness (RBE) of 50 kV X‐rays measured in a phantom for intraoperative tumor‐bed irradiation. Int J Radiat Oncol Biol Phys. 2013;85(4):1127‐1133. doi:10.1016/j.ijrobp.2012.08.005 Epub 2012 Sep 14 PMID: 22981707

Okamoto H, Kanai T, Kase Y, et al. Relation between lineal energy distribution and relative biological effectiveness for photon beams according to the microdosimetric kinetic model. J Radiat Res. 2011;52(1):75‐81. doi:10.1269/jrr.10073 Epub 2010 Dec 13 PMID: 21160135

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace