Getting a molecular grip on the half-lives of iminothioindoxyl photoswitches

. 2024 Jul 26 ; 15 (35) : 14379-89. [epub] 20240726

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39165728

Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.

Zobrazit více v PubMed

Zhang Z. Wang W. O'Hagan M. Dai J. Zhang J. Tian H. Angew Chem. Int. Ed. Engl. 2022;61:e202205758. doi: 10.1002/anie.202205758. PubMed DOI

Wang H. Bisoyi H. K. Zhang X. Hassan F. Li Q. Chem.–Eur. J. 2022;28:e202103906. doi: 10.1002/chem.202103906. PubMed DOI

Welleman I. M. Hoorens M. W. H. Feringa B. L. Boersma H. H. Szymanski W. Chem. Sci. 2020;11:11672–11691. doi: 10.1039/D0SC04187D. PubMed DOI PMC

Crespi S. Simeth N. A. König B. Nat. Rev. Chem. 2019;3:133–146. doi: 10.1038/s41570-019-0074-6. DOI

Hvilsted S. Sánchez C. Alcalá R. J. Mater. Chem. 2009;19:6641–6648. doi: 10.1039/B900930M. DOI

Pramanik B. Ahmed S. Gels. 2022;8:533. doi: 10.3390/gels8090533. PubMed DOI PMC

Banghart M. Borges K. Isacoff E. Trauner D. Kramer R. H. Nat. Neurosci. 2004;7:1381–1386. doi: 10.1038/nn1356. PubMed DOI PMC

Gelebart A. H. Jan Mulder D. Varga M. Konya A. Vantomme G. Meijer E. W. Selinger R. L. B. Broer D. J. Nature. 2017;546:632–636. doi: 10.1038/nature22987. PubMed DOI PMC

Pianowski Z. L. Chem.–Eur. J. 2019;25:5128–5144. doi: 10.1002/chem.201805814. PubMed DOI

Szymanski W. Beierle J. M. Kistemaker H. A. Velema W. A. Feringa B. L. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI

Beharry A. A. Woolley G. A. Chem. Soc. Rev. 2011;40:4422–4437. doi: 10.1039/C1CS15023E. PubMed DOI

Hoorens M. W. Szymanski W. Trends Biochem. Sci. 2018;43:567–575. doi: 10.1016/j.tibs.2018.05.004. PubMed DOI

Hoorens M. W. H. Medved M. Laurent A. D. Di Donato M. Fanetti S. Slappendel L. Hilbers M. Feringa B. L. Jan Buma W. Szymanski W. Nat. Commun. 2019;10:2390. doi: 10.1038/s41467-019-10251-8. PubMed DOI PMC

Petermayer C. Dube H. Acc. Chem. Res. 2018;51:1153–1163. doi: 10.1021/acs.accounts.7b00638. PubMed DOI

Wiedbrauk S. Dube H. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI

Bleger D. Schwarz J. Brouwer A. M. Hecht S. J. Am. Chem. Soc. 2012;134:20597–20600. doi: 10.1021/ja310323y. PubMed DOI

Boelke J. Hecht S. Adv. Opt. Mater. 2019;7:1900404. doi: 10.1002/adom.201900404. DOI

Zhang J. Tian H. Adv. Opt. Mater. 2018;6:1701278. doi: 10.1002/adom.201701278. DOI

Bleger D. Hecht S. Angew Chem. Int. Ed. Engl. 2015;54:11338–11349. doi: 10.1002/anie.201500628. PubMed DOI

Samanta S. Babalhavaeji A. Dong M. X. Woolley G. A. Angew Chem. Int. Ed. Engl. 2013;52:14127–14130. doi: 10.1002/anie.201306352. PubMed DOI PMC

Medved M. Di Donato M. Buma W. J. Laurent A. D. Lameijer L. Hrivnak T. Romanov I. Tran S. Feringa B. L. Szymanski W. Woolley G. A. J. Am. Chem. Soc. 2023;145:19894–19902. doi: 10.1021/jacs.3c06157. PubMed DOI

Yang Y. Hughes R. P. Aprahamian I. J. Am. Chem. Soc. 2014;136:13190–13193. doi: 10.1021/ja508125n. PubMed DOI

Sacherer M. Hampel F. Dube H. Nat. Commun. 2023;14:4382. doi: 10.1038/s41467-023-39944-x. PubMed DOI PMC

Zitzmann M. Hampel F. Dube H. Chem. Sci. 2023;14:5734–5742. doi: 10.1039/D2SC06939C. PubMed DOI PMC

Petermayer C. Thumser S. Kink F. Mayer P. Dube H. J. Am. Chem. Soc. 2017;139:15060–15067. doi: 10.1021/jacs.7b07531. PubMed DOI

Köttner L. Ciekalski E. Dube H. Angew. Chem. 2023;135:e202312955. doi: 10.1002/ange.202312955. PubMed DOI

Medved M. Hoorens M. W. H. Di Donato M. Laurent A. D. Fan J. Taddei M. Hilbers M. Feringa B. L. Buma W. J. Szymanski W. Chem. Sci. 2021;12:4588–4598. doi: 10.1039/D0SC07000A. PubMed DOI PMC

Rickhoff J. Arndt N. B. Bockmann M. Doltsinis N. L. Ravoo B. J. Kortekaas L. J. Org. Chem. 2022;87:10605–10612. doi: 10.1021/acs.joc.2c00661. PubMed DOI PMC

Klaue K. Han W. Liesfeld P. Berger F. Garmshausen Y. Hecht S. J. Am. Chem. Soc. 2020;142:11857–11864. doi: 10.1021/jacs.0c04219. PubMed DOI

Shao B. Aprahamian I. ChemistryOpen. 2020;9:191–194. doi: 10.1002/open.201900340. PubMed DOI PMC

Siewertsen R. Neumann H. Buchheim-Stehn B. Herges R. Nather C. Renth F. Temps F. J. Am. Chem. Soc. 2009;131:15594–15595. doi: 10.1021/ja906547d. PubMed DOI

Sell H. Nather C. Herges R. Beilstein J. Org. Chem. 2013;9:1–7. doi: 10.3762/bjoc.9.1. PubMed DOI PMC

Samanta S. Qin C. Lough A. J. Woolley G. A. Angew Chem. Int. Ed. Engl. 2012;51:6452–6455. doi: 10.1002/anie.201202383. PubMed DOI

Lentes P. Stadler E. Rohricht F. Brahms A. Grobner J. Sonnichsen F. D. Gescheidt G. Herges R. J. Am. Chem. Soc. 2019;141:13592–13600. doi: 10.1021/jacs.9b06104. PubMed DOI

Hammerich M. Schutt C. Stahler C. Lentes P. Rohricht F. Hoppner R. Herges R. J. Am. Chem. Soc. 2016;138:13111–13114. doi: 10.1021/jacs.6b05846. PubMed DOI

Samanta S. Beharry A. A. Sadovski O. McCormick T. M. Babalhavaeji A. Tropepe V. Woolley G. A. J. Am. Chem. Soc. 2013;135:9777–9784. doi: 10.1021/ja402220t. PubMed DOI

Huang C. Y. Bonasera A. Hristov L. Garmshausen Y. Schmidt B. M. Jacquemin D. Hecht S. J. Am. Chem. Soc. 2017;139:15205–15211. doi: 10.1021/jacs.7b08726. PubMed DOI

Thumser S. Köttner L. Hoffmann N. Mayer P. Dube H. J. Am. Chem. Soc. 2021;143:18251–18260. doi: 10.1021/jacs.1c08206. PubMed DOI PMC

Gaur A. K. Kumar H. Gupta D. Tom I. P. Nampoothiry D. N. Thakur S. K. Mahadevan A. Singh S. Venkataramani S. J. Org. Chem. 2022;87:6541–6551. doi: 10.1021/acs.joc.2c00088. PubMed DOI

Simeth N. A. Crespi S. Fagnoni M. Konig B. J. Am. Chem. Soc. 2018;140:2940–2946. doi: 10.1021/jacs.7b12871. PubMed DOI

García-Amorós J. Velasco D. Beilstein J. Org. Chem. 2012;8:1003–1017. doi: 10.3762/bjoc.8.113. PubMed DOI PMC

Crespi S. Simeth N. A. Di Donato M. Doria S. Stindt C. N. Hilbers M. F. Kiss F. L. Toyoda R. Wesseling S. Buma W. J. Feringa B. L. Szymanski W. Angew Chem. Int. Ed. Engl. 2021;60:25290–25295. doi: 10.1002/anie.202111748. PubMed DOI PMC

Hallenbeck Z. Wertz E. A. Adv. Opt. Mater. 2022;10:2200480. doi: 10.1002/adom.202200480. DOI

Deniz E. Tomasulo M. Cusido J. Yildiz I. Petriella M. Bossi M. L. Sortino S. Raymo F. M. J. Phys. Chem. 2012;116:6058–6068.

Velema W. A. van der Berg J. P. Hansen M. J. Szymanski W. Driessen A. J. Feringa B. L. Nat. Chem. 2013;5:924–928. doi: 10.1038/nchem.1750. PubMed DOI

Dong M. Babalhavaeji A. Collins C. V. Jarrah K. Sadovski O. Dai Q. Woolley G. A. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI

Volaric J. Szymanski W. Simeth N. A. Feringa B. L. Chem. Soc. Rev. 2021;50:12377–12449. doi: 10.1039/D0CS00547A. PubMed DOI PMC

Feid C. Luma L. Fischer T. Loffler J. G. Grebenovsky N. Wachtveitl J. Heckel A. Bredenbeck J. Angew Chem. Int. Ed. Engl. 2024;63:e202317047. doi: 10.1002/anie.202317047. PubMed DOI

Kink F. Collado M. P. Wiedbrauk S. Mayer P. Dube H. Chem.–Eur. J. 2017;23:6237–6243. doi: 10.1002/chem.201700826. PubMed DOI

Lehn J. M. Chem.–Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI

Köttner L. Wolff F. Mayer P. Zanin E. Dube H. J. Am. Chem. Soc. 2024;146:1894–1903. doi: 10.1021/jacs.3c07710. PubMed DOI

Sadovski O. Beharry A. A. Zhang F. Woolley G. A. Angew Chem. Int. Ed. Engl. 2009;48:1484–1486. doi: 10.1002/anie.200805013. PubMed DOI

Maerz B. Wiedbrauk S. Oesterling S. Samoylova E. Nenov A. Mayer P. de Vivie-Riedle R. Zinth W. Dube H. Chem.–Eur. J. 2014;20:13984–13992. doi: 10.1002/chem.201403661. PubMed DOI

Dokic J. Gothe M. Wirth J. Peters M. V. Schwarz J. Hecht S. Saalfrank P. J. Phys. Chem. 2009;113:6763–6773. doi: 10.1021/jp9021344. PubMed DOI

Dong M. Babalhavaeji A. Samanta S. Beharry A. A. Woolley G. A. Acc. Chem. Res. 2015;48:2662–2670. doi: 10.1021/acs.accounts.5b00270. PubMed DOI

Mutter N. L. Volarić J. Szymanski W. Feringa B. L. Maglia G. J. Am. Chem. Soc. 2019;141:14356–14363. doi: 10.1021/jacs.9b06998. PubMed DOI PMC

Tanaka K. Kohayakawa K. Irie T. Iwata S. Taguchi K. Fluor J. Chem. 2007;128:1094–1097.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...