Getting a molecular grip on the half-lives of iminothioindoxyl photoswitches
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39165728
PubMed Central
PMC11331343
DOI
10.1039/d4sc01457j
PII: d4sc01457j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.
CNR ICCOM via Madonna del Piano 10 50019 Sesto Fiorentino Italy
Faculty of Natural Sciences Comenius University Ilkovičova 6 SK 842 15 Bratislava Slovak Republic
LENS European Laboratory for Non Linear Spectroscopy 50019 Sesto Fiorentino FI Italy
Nantes Université CNRS CEISAM UMR 6230 F 44000 Nantes France
Zobrazit více v PubMed
Zhang Z. Wang W. O'Hagan M. Dai J. Zhang J. Tian H. Angew Chem. Int. Ed. Engl. 2022;61:e202205758. doi: 10.1002/anie.202205758. PubMed DOI
Wang H. Bisoyi H. K. Zhang X. Hassan F. Li Q. Chem.–Eur. J. 2022;28:e202103906. doi: 10.1002/chem.202103906. PubMed DOI
Welleman I. M. Hoorens M. W. H. Feringa B. L. Boersma H. H. Szymanski W. Chem. Sci. 2020;11:11672–11691. doi: 10.1039/D0SC04187D. PubMed DOI PMC
Crespi S. Simeth N. A. König B. Nat. Rev. Chem. 2019;3:133–146. doi: 10.1038/s41570-019-0074-6. DOI
Hvilsted S. Sánchez C. Alcalá R. J. Mater. Chem. 2009;19:6641–6648. doi: 10.1039/B900930M. DOI
Pramanik B. Ahmed S. Gels. 2022;8:533. doi: 10.3390/gels8090533. PubMed DOI PMC
Banghart M. Borges K. Isacoff E. Trauner D. Kramer R. H. Nat. Neurosci. 2004;7:1381–1386. doi: 10.1038/nn1356. PubMed DOI PMC
Gelebart A. H. Jan Mulder D. Varga M. Konya A. Vantomme G. Meijer E. W. Selinger R. L. B. Broer D. J. Nature. 2017;546:632–636. doi: 10.1038/nature22987. PubMed DOI PMC
Pianowski Z. L. Chem.–Eur. J. 2019;25:5128–5144. doi: 10.1002/chem.201805814. PubMed DOI
Szymanski W. Beierle J. M. Kistemaker H. A. Velema W. A. Feringa B. L. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI
Beharry A. A. Woolley G. A. Chem. Soc. Rev. 2011;40:4422–4437. doi: 10.1039/C1CS15023E. PubMed DOI
Hoorens M. W. Szymanski W. Trends Biochem. Sci. 2018;43:567–575. doi: 10.1016/j.tibs.2018.05.004. PubMed DOI
Hoorens M. W. H. Medved M. Laurent A. D. Di Donato M. Fanetti S. Slappendel L. Hilbers M. Feringa B. L. Jan Buma W. Szymanski W. Nat. Commun. 2019;10:2390. doi: 10.1038/s41467-019-10251-8. PubMed DOI PMC
Petermayer C. Dube H. Acc. Chem. Res. 2018;51:1153–1163. doi: 10.1021/acs.accounts.7b00638. PubMed DOI
Wiedbrauk S. Dube H. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI
Bleger D. Schwarz J. Brouwer A. M. Hecht S. J. Am. Chem. Soc. 2012;134:20597–20600. doi: 10.1021/ja310323y. PubMed DOI
Boelke J. Hecht S. Adv. Opt. Mater. 2019;7:1900404. doi: 10.1002/adom.201900404. DOI
Zhang J. Tian H. Adv. Opt. Mater. 2018;6:1701278. doi: 10.1002/adom.201701278. DOI
Bleger D. Hecht S. Angew Chem. Int. Ed. Engl. 2015;54:11338–11349. doi: 10.1002/anie.201500628. PubMed DOI
Samanta S. Babalhavaeji A. Dong M. X. Woolley G. A. Angew Chem. Int. Ed. Engl. 2013;52:14127–14130. doi: 10.1002/anie.201306352. PubMed DOI PMC
Medved M. Di Donato M. Buma W. J. Laurent A. D. Lameijer L. Hrivnak T. Romanov I. Tran S. Feringa B. L. Szymanski W. Woolley G. A. J. Am. Chem. Soc. 2023;145:19894–19902. doi: 10.1021/jacs.3c06157. PubMed DOI
Yang Y. Hughes R. P. Aprahamian I. J. Am. Chem. Soc. 2014;136:13190–13193. doi: 10.1021/ja508125n. PubMed DOI
Sacherer M. Hampel F. Dube H. Nat. Commun. 2023;14:4382. doi: 10.1038/s41467-023-39944-x. PubMed DOI PMC
Zitzmann M. Hampel F. Dube H. Chem. Sci. 2023;14:5734–5742. doi: 10.1039/D2SC06939C. PubMed DOI PMC
Petermayer C. Thumser S. Kink F. Mayer P. Dube H. J. Am. Chem. Soc. 2017;139:15060–15067. doi: 10.1021/jacs.7b07531. PubMed DOI
Köttner L. Ciekalski E. Dube H. Angew. Chem. 2023;135:e202312955. doi: 10.1002/ange.202312955. PubMed DOI
Medved M. Hoorens M. W. H. Di Donato M. Laurent A. D. Fan J. Taddei M. Hilbers M. Feringa B. L. Buma W. J. Szymanski W. Chem. Sci. 2021;12:4588–4598. doi: 10.1039/D0SC07000A. PubMed DOI PMC
Rickhoff J. Arndt N. B. Bockmann M. Doltsinis N. L. Ravoo B. J. Kortekaas L. J. Org. Chem. 2022;87:10605–10612. doi: 10.1021/acs.joc.2c00661. PubMed DOI PMC
Klaue K. Han W. Liesfeld P. Berger F. Garmshausen Y. Hecht S. J. Am. Chem. Soc. 2020;142:11857–11864. doi: 10.1021/jacs.0c04219. PubMed DOI
Shao B. Aprahamian I. ChemistryOpen. 2020;9:191–194. doi: 10.1002/open.201900340. PubMed DOI PMC
Siewertsen R. Neumann H. Buchheim-Stehn B. Herges R. Nather C. Renth F. Temps F. J. Am. Chem. Soc. 2009;131:15594–15595. doi: 10.1021/ja906547d. PubMed DOI
Sell H. Nather C. Herges R. Beilstein J. Org. Chem. 2013;9:1–7. doi: 10.3762/bjoc.9.1. PubMed DOI PMC
Samanta S. Qin C. Lough A. J. Woolley G. A. Angew Chem. Int. Ed. Engl. 2012;51:6452–6455. doi: 10.1002/anie.201202383. PubMed DOI
Lentes P. Stadler E. Rohricht F. Brahms A. Grobner J. Sonnichsen F. D. Gescheidt G. Herges R. J. Am. Chem. Soc. 2019;141:13592–13600. doi: 10.1021/jacs.9b06104. PubMed DOI
Hammerich M. Schutt C. Stahler C. Lentes P. Rohricht F. Hoppner R. Herges R. J. Am. Chem. Soc. 2016;138:13111–13114. doi: 10.1021/jacs.6b05846. PubMed DOI
Samanta S. Beharry A. A. Sadovski O. McCormick T. M. Babalhavaeji A. Tropepe V. Woolley G. A. J. Am. Chem. Soc. 2013;135:9777–9784. doi: 10.1021/ja402220t. PubMed DOI
Huang C. Y. Bonasera A. Hristov L. Garmshausen Y. Schmidt B. M. Jacquemin D. Hecht S. J. Am. Chem. Soc. 2017;139:15205–15211. doi: 10.1021/jacs.7b08726. PubMed DOI
Thumser S. Köttner L. Hoffmann N. Mayer P. Dube H. J. Am. Chem. Soc. 2021;143:18251–18260. doi: 10.1021/jacs.1c08206. PubMed DOI PMC
Gaur A. K. Kumar H. Gupta D. Tom I. P. Nampoothiry D. N. Thakur S. K. Mahadevan A. Singh S. Venkataramani S. J. Org. Chem. 2022;87:6541–6551. doi: 10.1021/acs.joc.2c00088. PubMed DOI
Simeth N. A. Crespi S. Fagnoni M. Konig B. J. Am. Chem. Soc. 2018;140:2940–2946. doi: 10.1021/jacs.7b12871. PubMed DOI
García-Amorós J. Velasco D. Beilstein J. Org. Chem. 2012;8:1003–1017. doi: 10.3762/bjoc.8.113. PubMed DOI PMC
Crespi S. Simeth N. A. Di Donato M. Doria S. Stindt C. N. Hilbers M. F. Kiss F. L. Toyoda R. Wesseling S. Buma W. J. Feringa B. L. Szymanski W. Angew Chem. Int. Ed. Engl. 2021;60:25290–25295. doi: 10.1002/anie.202111748. PubMed DOI PMC
Hallenbeck Z. Wertz E. A. Adv. Opt. Mater. 2022;10:2200480. doi: 10.1002/adom.202200480. DOI
Deniz E. Tomasulo M. Cusido J. Yildiz I. Petriella M. Bossi M. L. Sortino S. Raymo F. M. J. Phys. Chem. 2012;116:6058–6068.
Velema W. A. van der Berg J. P. Hansen M. J. Szymanski W. Driessen A. J. Feringa B. L. Nat. Chem. 2013;5:924–928. doi: 10.1038/nchem.1750. PubMed DOI
Dong M. Babalhavaeji A. Collins C. V. Jarrah K. Sadovski O. Dai Q. Woolley G. A. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI
Volaric J. Szymanski W. Simeth N. A. Feringa B. L. Chem. Soc. Rev. 2021;50:12377–12449. doi: 10.1039/D0CS00547A. PubMed DOI PMC
Feid C. Luma L. Fischer T. Loffler J. G. Grebenovsky N. Wachtveitl J. Heckel A. Bredenbeck J. Angew Chem. Int. Ed. Engl. 2024;63:e202317047. doi: 10.1002/anie.202317047. PubMed DOI
Kink F. Collado M. P. Wiedbrauk S. Mayer P. Dube H. Chem.–Eur. J. 2017;23:6237–6243. doi: 10.1002/chem.201700826. PubMed DOI
Lehn J. M. Chem.–Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI
Köttner L. Wolff F. Mayer P. Zanin E. Dube H. J. Am. Chem. Soc. 2024;146:1894–1903. doi: 10.1021/jacs.3c07710. PubMed DOI
Sadovski O. Beharry A. A. Zhang F. Woolley G. A. Angew Chem. Int. Ed. Engl. 2009;48:1484–1486. doi: 10.1002/anie.200805013. PubMed DOI
Maerz B. Wiedbrauk S. Oesterling S. Samoylova E. Nenov A. Mayer P. de Vivie-Riedle R. Zinth W. Dube H. Chem.–Eur. J. 2014;20:13984–13992. doi: 10.1002/chem.201403661. PubMed DOI
Dokic J. Gothe M. Wirth J. Peters M. V. Schwarz J. Hecht S. Saalfrank P. J. Phys. Chem. 2009;113:6763–6773. doi: 10.1021/jp9021344. PubMed DOI
Dong M. Babalhavaeji A. Samanta S. Beharry A. A. Woolley G. A. Acc. Chem. Res. 2015;48:2662–2670. doi: 10.1021/acs.accounts.5b00270. PubMed DOI
Mutter N. L. Volarić J. Szymanski W. Feringa B. L. Maglia G. J. Am. Chem. Soc. 2019;141:14356–14363. doi: 10.1021/jacs.9b06998. PubMed DOI PMC
Tanaka K. Kohayakawa K. Irie T. Iwata S. Taguchi K. Fluor J. Chem. 2007;128:1094–1097.