Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism

. 2021 Feb 09 ; 12 (12) : 4588-4598. [epub] 20210209

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34163724

Multi-responsive functional molecules are key for obtaining user-defined control of the properties and functions of chemical and biological systems. In this respect, pH-responsive photochromes, whose switching can be directed with light and acid-base equilibria, have emerged as highly attractive molecular units. The challenge in their design comes from the need to accommodate application-defined boundary conditions for both light- and protonation-responsivity. Here we combine time-resolved spectroscopic studies, on time scales ranging from femtoseconds to seconds, with density functional theory (DFT) calculations to elucidate and apply the acidochromism of a recently designed iminothioindoxyl (ITI) photoswitch. We show that protonation of the thermally stable Z isomer leads to a strong batochromically-shifted absorption band, allowing for fast isomerization to the metastable E isomer with light in the 500-600 nm region. Theoretical studies of the reaction mechanism reveal the crucial role of the acid-base equilibrium which controls the populations of the protonated and neutral forms of the E isomer. Since the former is thermally stable, while the latter re-isomerizes on a millisecond time scale, we are able to modulate the half-life of ITIs over three orders of magnitude by shifting this equilibrium. Finally, stable bidirectional switching of protonated ITI with green and red light is demonstrated with a half-life in the range of tens of seconds. Altogether, we designed a new type of multi-responsive molecular switch in which protonation red-shifts the activation wavelength by over 100 nm and enables efficient tuning of the half-life in the millisecond-second range.

Zobrazit více v PubMed

Feringa B. L. and Browne W. R., Molecular Switches, Wiley-VCH, Weinheim, 2nd edn, 2011

Pianowski Z. L. Chem. –Eur. J. 2019;25:5128–5144. doi: 10.1002/chem.201805814. PubMed DOI

Groppi J. Baroncini M. Venturi M. Silvi S. Credi A. Chem. Commun. 2019;55:12595–12602. doi: 10.1039/C9CC06516D. PubMed DOI

Kay E. R. Leigh D. A. Angew. Chem., Int. Ed. 2015;54:10080–10088. doi: 10.1002/anie.201503375. PubMed DOI PMC

Szymański W. Beierle J. M. Kistemaker H. A. V. Velema W. A. Feringa B. L. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI

Ankenbruck N. Courtney T. Naro Y. Deiters A. Angew. Chem., Int. Ed. 2018;57:2768–2798. doi: 10.1002/anie.201700171. PubMed DOI PMC

Welleman I. M. Hoorens M. W. H. Feringa B. L. Boersma H. H. Szymański W. Chem. Sci. 2020;11:11672–11691. doi: 10.1039/D0SC04187D. PubMed DOI PMC

Goulet-Hanssens A. Eisenreich F. Hecht S. Adv. Mater. 2020;32:1905966. doi: 10.1002/adma.201905966. PubMed DOI

Russew M. M. Hecht S. Adv. Mater. 2010;22:3348–3360. doi: 10.1002/adma.200904102. PubMed DOI

Garavelli M. Celani P. Bernardi F. Robb M. A. Olivucci M. J. Am. Chem. Soc. 1997;119:6891–6901. doi: 10.1021/ja9610895. DOI

Habuchi S. Dedecker P. Hotta J.-i. Flors C. Ando R. Mizuno H. Miyawaki A. Hofkens J. Photochem. Photobiol. Sci. 2006;5:567–576. doi: 10.1039/b516339k. PubMed DOI

Luecke H. Schobert B. Richter H. T. Cartailler J. P. Lanyi J. K. Science. 1999;286:255–260. doi: 10.1126/science.286.5438.255. PubMed DOI

Velazquez Escobar F. Piwowarski P. Salewski J. Michael N. Fernandez Lopez M. Rupp A. Muhammad Qureshi B. Scheerer P. Bartl F. Frankenberg-Dinkel N. Siebert F. Andrea Mroginski M. Hildebrandt P. Nat. Chem. 2015;7:423–430. doi: 10.1038/nchem.2225. PubMed DOI

Samanta S. Babalhavaeji A. Dong M. Woolley G. A. Angew. Chem., Int. Ed. 2013;52:14127–14130. doi: 10.1002/anie.201306352. PubMed DOI PMC

Dong M. Babalhavaeji A. Collins C. V. Jarrah K. Sadovski O. Dai Q. Woolley G. A. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI

Kennedy A. D. W. Sandler I. Andréasson J. Ho J. Beves J. E. Chem. –Eur. J. 2020;26:1103–1110. doi: 10.1002/chem.201904309. PubMed DOI

Roldan D. Cobo S. Lafolet F. Vilà N. Bochot C. Bucher C. Saint-Aman E. Boggio-Pasqua M. Garavelli M. Royal G. Chem. –Eur. J. 2015;21:455–467. doi: 10.1002/chem.201404858. PubMed DOI

Wolf J. Huhn T. Steiner U. E. Phys. Chem. Chem. Phys. 2015;17:6066–6075. doi: 10.1039/C4CP05258G. PubMed DOI

Pu S. Z. Sun Q. Fan C.-B. Wang R.-J. Liu G. J. Mater. Chem. C. 2016;4:3075–3093. doi: 10.1039/C6TC00110F. DOI

Liao Y. Acc. Chem. Res. 2017;50:1956–1964. doi: 10.1021/acs.accounts.7b00190. PubMed DOI

Kink F. Collado M. P. Wiedbrauk S. Mayer P. Dube H. Chem. –Eur. J. 2017;23:6237–6243. doi: 10.1002/chem.201700826. PubMed DOI

Shao B. Aprahamian I. ChemPhotoChem. 2019;3:361–364. doi: 10.1002/cptc.201900119. DOI

Berton C. Busiello D. M. Zamuner S. Solari E. Scopelliti R. Fadaei-Tirani F. Severin K. Pezzato C. Chem. Sci. 2020;11:8457–8468. doi: 10.1039/D0SC03152F. PubMed DOI PMC

Halbritter T. Kaiser C. Wachtveitl J. Heckel A. J. Org. Chem. 2017;82:8040–8047. doi: 10.1021/acs.joc.7b01268. PubMed DOI

Peters M. V. Stoll R. S. Kühn A. Hecht S. Angew. Chem., Int. Ed. 2008;47:5968–5972. doi: 10.1002/anie.200802050. PubMed DOI

Weston C. E. Richardson R. D. Fuchter M. J. Chem. Commun. 2016;52:4521–4524. doi: 10.1039/C5CC10380K. PubMed DOI

Hoorens M. W. H. Medved’ M. Laurent A. D. Di Donato M. Fanetti S. Slappendel L. Hilbers M. Feringa B. L. Buma W. J. Szymanski W. Nat. Commun. 2019;10:2390. doi: 10.1038/s41467-019-10251-8. PubMed DOI PMC

Carrera E. Jones P. S. Iglesias S. Guadagno J. V. Warburton E. A. Fryer T. D. Aigbirhio F. I. Baron J. C. J. Cereb. Blood Flow Metab. 2011;31:1027–1035. doi: 10.1038/jcbfm.2010.197. PubMed DOI PMC

Lerch M. M. Hansen M. J. Velema W. A. Szymanski W. Feringa B. L. Nat. Commun. 2016;7:12054. doi: 10.1038/ncomms12054. PubMed DOI PMC

Lehn J. M. Dyn. Stereochem. Fortschritte der Chem. Forschung. 1970;15:311–377.

Lehn J. M. Chem. –Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI

Greb L. Eichhöfer A. Lehn J. M. Angew. Chem., Int. Ed. 2015;54:14345–14348. doi: 10.1002/anie.201506691. PubMed DOI

Suslova E. E. Ovchenkova E. N. Lomova T. N. Tetrahedron Lett. 2014;55:4325–4327. doi: 10.1016/j.tetlet.2014.06.021. DOI

Christian S. D. Stevens T. L. J. Phys. Chem. 1972;76:2039–2044. doi: 10.1021/j100658a023. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09 (Revision A.02), Gaussian Inc., Wallingford CT, 2009

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 (Revision A.03), Gaussian Inc., Wallingford CT, 2016

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327. PubMed

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.

TURBOMOLE V7.3, 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, http://www.turbomole.com

Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.

Ditchfield R. Hehre W. J. Pople J. A. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI

Marenich A. V. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Riplinger C. Pinski P. Becker U. Valeev E. F. Neese F. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI

Purvis G. D. Bartlett R. J. J. Chem. Phys. 1982;76:1910–1918. doi: 10.1063/1.443164. DOI

Raghavachari K. Trucks G. W. Pople J. A. Head-Gordon M. Chem. Phys. Lett. 1989;157:479–483. doi: 10.1016/S0009-2614(89)87395-6. DOI

Nie H. Self J. L. Kuenstler A. S. Hayward R. C. Read de Alaniz J. Adv. Opt. Mater. 2019;7:1900224. doi: 10.1002/adom.201900224. DOI

Abdollahi A. Roghani-Mamaqani H. Razavi B. Prog. Polym. Sci. 2019;98:101149. doi: 10.1016/j.progpolymsci.2019.101149. DOI

Zhuang J. Gordon M. R. Ventura J. Li L. Thayumanavan S. Chem. Soc. Rev. 2013;42:7421–7435. doi: 10.1039/C3CS60094G. PubMed DOI PMC

Fihey A. Perrier A. Browne W. R. Jacquemin D. Chem. Soc. Rev. 2015;44:3719–3759. doi: 10.1039/C5CS00137D. PubMed DOI

Schattling P. Jochum F. D. Theato P. Polym. Chem. 2014;5:25–36. doi: 10.1039/C3PY00880K. DOI

Ludwanowski S. Ari M. Parison K. Kalthoum S. Straub P. Pompe N. Weber S. Walter M. Walther A. Chem. –Eur. J. 2020;26:13203–13212. doi: 10.1002/chem.202000659. PubMed DOI PMC

Dong M. Babalhavaeji A. Hansen M. J. Kálmán L. Woolley G. A. Chem. Commun. 2015;51:12981–12984. doi: 10.1039/C5CC02804C. PubMed DOI

Petermayer C. Thumser S. Kink F. Mayer P. Dube H. J. Am. Chem. Soc. 2017;139:15060–15067. doi: 10.1021/jacs.7b07531. PubMed DOI

Yang Y. Hughes R. P. Aprahamian I. J. Am. Chem. Soc. 2014;136:13190–13193. doi: 10.1021/ja508125n. PubMed DOI

Zweig J. E. Newhouse T. R. J. Am. Chem. Soc. 2017;139:10956–10959. doi: 10.1021/jacs.7b04448. PubMed DOI

Tatum L. A. Foy J. T. Aprahamian I. J. Am. Chem. Soc. 2014;136:17438–17441. doi: 10.1021/ja511135k. PubMed DOI

Samanta S. Beharry A. A. Sadovski O. McCormick T. M. Babalhavaeji A. Tropepe V. Woolley G. A. J. Am. Chem. Soc. 2013;135:9777–9784. doi: 10.1021/ja402220t. PubMed DOI

Wiedbrauk S. Dube H. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Getting a molecular grip on the half-lives of iminothioindoxyl photoswitches

. 2024 Jul 26 ; 15 (35) : 14379-89. [epub] 20240726

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...