Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34163724
PubMed Central
PMC8179557
DOI
10.1039/d0sc07000a
PII: d0sc07000a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Multi-responsive functional molecules are key for obtaining user-defined control of the properties and functions of chemical and biological systems. In this respect, pH-responsive photochromes, whose switching can be directed with light and acid-base equilibria, have emerged as highly attractive molecular units. The challenge in their design comes from the need to accommodate application-defined boundary conditions for both light- and protonation-responsivity. Here we combine time-resolved spectroscopic studies, on time scales ranging from femtoseconds to seconds, with density functional theory (DFT) calculations to elucidate and apply the acidochromism of a recently designed iminothioindoxyl (ITI) photoswitch. We show that protonation of the thermally stable Z isomer leads to a strong batochromically-shifted absorption band, allowing for fast isomerization to the metastable E isomer with light in the 500-600 nm region. Theoretical studies of the reaction mechanism reveal the crucial role of the acid-base equilibrium which controls the populations of the protonated and neutral forms of the E isomer. Since the former is thermally stable, while the latter re-isomerizes on a millisecond time scale, we are able to modulate the half-life of ITIs over three orders of magnitude by shifting this equilibrium. Finally, stable bidirectional switching of protonated ITI with green and red light is demonstrated with a half-life in the range of tens of seconds. Altogether, we designed a new type of multi-responsive molecular switch in which protonation red-shifts the activation wavelength by over 100 nm and enables efficient tuning of the half-life in the millisecond-second range.
European Laboratory for Non Linear Spectroscopy via N Carrara 1 50019 Sesto Fiorentino Italy
ICCOM CNR via Madonna del Piano 10 50019 Sesto Fiorentino Italy
Laboratoire CEISAM UMR UN CNRS 6230 Université de Nantes Nantes F 44000 France
Zobrazit více v PubMed
Feringa B. L. and Browne W. R., Molecular Switches, Wiley-VCH, Weinheim, 2nd edn, 2011
Pianowski Z. L. Chem. –Eur. J. 2019;25:5128–5144. doi: 10.1002/chem.201805814. PubMed DOI
Groppi J. Baroncini M. Venturi M. Silvi S. Credi A. Chem. Commun. 2019;55:12595–12602. doi: 10.1039/C9CC06516D. PubMed DOI
Kay E. R. Leigh D. A. Angew. Chem., Int. Ed. 2015;54:10080–10088. doi: 10.1002/anie.201503375. PubMed DOI PMC
Szymański W. Beierle J. M. Kistemaker H. A. V. Velema W. A. Feringa B. L. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI
Ankenbruck N. Courtney T. Naro Y. Deiters A. Angew. Chem., Int. Ed. 2018;57:2768–2798. doi: 10.1002/anie.201700171. PubMed DOI PMC
Welleman I. M. Hoorens M. W. H. Feringa B. L. Boersma H. H. Szymański W. Chem. Sci. 2020;11:11672–11691. doi: 10.1039/D0SC04187D. PubMed DOI PMC
Goulet-Hanssens A. Eisenreich F. Hecht S. Adv. Mater. 2020;32:1905966. doi: 10.1002/adma.201905966. PubMed DOI
Russew M. M. Hecht S. Adv. Mater. 2010;22:3348–3360. doi: 10.1002/adma.200904102. PubMed DOI
Garavelli M. Celani P. Bernardi F. Robb M. A. Olivucci M. J. Am. Chem. Soc. 1997;119:6891–6901. doi: 10.1021/ja9610895. DOI
Habuchi S. Dedecker P. Hotta J.-i. Flors C. Ando R. Mizuno H. Miyawaki A. Hofkens J. Photochem. Photobiol. Sci. 2006;5:567–576. doi: 10.1039/b516339k. PubMed DOI
Luecke H. Schobert B. Richter H. T. Cartailler J. P. Lanyi J. K. Science. 1999;286:255–260. doi: 10.1126/science.286.5438.255. PubMed DOI
Velazquez Escobar F. Piwowarski P. Salewski J. Michael N. Fernandez Lopez M. Rupp A. Muhammad Qureshi B. Scheerer P. Bartl F. Frankenberg-Dinkel N. Siebert F. Andrea Mroginski M. Hildebrandt P. Nat. Chem. 2015;7:423–430. doi: 10.1038/nchem.2225. PubMed DOI
Samanta S. Babalhavaeji A. Dong M. Woolley G. A. Angew. Chem., Int. Ed. 2013;52:14127–14130. doi: 10.1002/anie.201306352. PubMed DOI PMC
Dong M. Babalhavaeji A. Collins C. V. Jarrah K. Sadovski O. Dai Q. Woolley G. A. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI
Kennedy A. D. W. Sandler I. Andréasson J. Ho J. Beves J. E. Chem. –Eur. J. 2020;26:1103–1110. doi: 10.1002/chem.201904309. PubMed DOI
Roldan D. Cobo S. Lafolet F. Vilà N. Bochot C. Bucher C. Saint-Aman E. Boggio-Pasqua M. Garavelli M. Royal G. Chem. –Eur. J. 2015;21:455–467. doi: 10.1002/chem.201404858. PubMed DOI
Wolf J. Huhn T. Steiner U. E. Phys. Chem. Chem. Phys. 2015;17:6066–6075. doi: 10.1039/C4CP05258G. PubMed DOI
Pu S. Z. Sun Q. Fan C.-B. Wang R.-J. Liu G. J. Mater. Chem. C. 2016;4:3075–3093. doi: 10.1039/C6TC00110F. DOI
Liao Y. Acc. Chem. Res. 2017;50:1956–1964. doi: 10.1021/acs.accounts.7b00190. PubMed DOI
Kink F. Collado M. P. Wiedbrauk S. Mayer P. Dube H. Chem. –Eur. J. 2017;23:6237–6243. doi: 10.1002/chem.201700826. PubMed DOI
Shao B. Aprahamian I. ChemPhotoChem. 2019;3:361–364. doi: 10.1002/cptc.201900119. DOI
Berton C. Busiello D. M. Zamuner S. Solari E. Scopelliti R. Fadaei-Tirani F. Severin K. Pezzato C. Chem. Sci. 2020;11:8457–8468. doi: 10.1039/D0SC03152F. PubMed DOI PMC
Halbritter T. Kaiser C. Wachtveitl J. Heckel A. J. Org. Chem. 2017;82:8040–8047. doi: 10.1021/acs.joc.7b01268. PubMed DOI
Peters M. V. Stoll R. S. Kühn A. Hecht S. Angew. Chem., Int. Ed. 2008;47:5968–5972. doi: 10.1002/anie.200802050. PubMed DOI
Weston C. E. Richardson R. D. Fuchter M. J. Chem. Commun. 2016;52:4521–4524. doi: 10.1039/C5CC10380K. PubMed DOI
Hoorens M. W. H. Medved’ M. Laurent A. D. Di Donato M. Fanetti S. Slappendel L. Hilbers M. Feringa B. L. Buma W. J. Szymanski W. Nat. Commun. 2019;10:2390. doi: 10.1038/s41467-019-10251-8. PubMed DOI PMC
Carrera E. Jones P. S. Iglesias S. Guadagno J. V. Warburton E. A. Fryer T. D. Aigbirhio F. I. Baron J. C. J. Cereb. Blood Flow Metab. 2011;31:1027–1035. doi: 10.1038/jcbfm.2010.197. PubMed DOI PMC
Lerch M. M. Hansen M. J. Velema W. A. Szymanski W. Feringa B. L. Nat. Commun. 2016;7:12054. doi: 10.1038/ncomms12054. PubMed DOI PMC
Lehn J. M. Dyn. Stereochem. Fortschritte der Chem. Forschung. 1970;15:311–377.
Lehn J. M. Chem. –Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI
Greb L. Eichhöfer A. Lehn J. M. Angew. Chem., Int. Ed. 2015;54:14345–14348. doi: 10.1002/anie.201506691. PubMed DOI
Suslova E. E. Ovchenkova E. N. Lomova T. N. Tetrahedron Lett. 2014;55:4325–4327. doi: 10.1016/j.tetlet.2014.06.021. DOI
Christian S. D. Stevens T. L. J. Phys. Chem. 1972;76:2039–2044. doi: 10.1021/j100658a023. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09 (Revision A.02), Gaussian Inc., Wallingford CT, 2009
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 (Revision A.03), Gaussian Inc., Wallingford CT, 2016
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327. PubMed
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.
TURBOMOLE V7.3, 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, http://www.turbomole.com
Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.
Ditchfield R. Hehre W. J. Pople J. A. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI
Marenich A. V. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Riplinger C. Pinski P. Becker U. Valeev E. F. Neese F. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI
Purvis G. D. Bartlett R. J. J. Chem. Phys. 1982;76:1910–1918. doi: 10.1063/1.443164. DOI
Raghavachari K. Trucks G. W. Pople J. A. Head-Gordon M. Chem. Phys. Lett. 1989;157:479–483. doi: 10.1016/S0009-2614(89)87395-6. DOI
Nie H. Self J. L. Kuenstler A. S. Hayward R. C. Read de Alaniz J. Adv. Opt. Mater. 2019;7:1900224. doi: 10.1002/adom.201900224. DOI
Abdollahi A. Roghani-Mamaqani H. Razavi B. Prog. Polym. Sci. 2019;98:101149. doi: 10.1016/j.progpolymsci.2019.101149. DOI
Zhuang J. Gordon M. R. Ventura J. Li L. Thayumanavan S. Chem. Soc. Rev. 2013;42:7421–7435. doi: 10.1039/C3CS60094G. PubMed DOI PMC
Fihey A. Perrier A. Browne W. R. Jacquemin D. Chem. Soc. Rev. 2015;44:3719–3759. doi: 10.1039/C5CS00137D. PubMed DOI
Schattling P. Jochum F. D. Theato P. Polym. Chem. 2014;5:25–36. doi: 10.1039/C3PY00880K. DOI
Ludwanowski S. Ari M. Parison K. Kalthoum S. Straub P. Pompe N. Weber S. Walter M. Walther A. Chem. –Eur. J. 2020;26:13203–13212. doi: 10.1002/chem.202000659. PubMed DOI PMC
Dong M. Babalhavaeji A. Hansen M. J. Kálmán L. Woolley G. A. Chem. Commun. 2015;51:12981–12984. doi: 10.1039/C5CC02804C. PubMed DOI
Petermayer C. Thumser S. Kink F. Mayer P. Dube H. J. Am. Chem. Soc. 2017;139:15060–15067. doi: 10.1021/jacs.7b07531. PubMed DOI
Yang Y. Hughes R. P. Aprahamian I. J. Am. Chem. Soc. 2014;136:13190–13193. doi: 10.1021/ja508125n. PubMed DOI
Zweig J. E. Newhouse T. R. J. Am. Chem. Soc. 2017;139:10956–10959. doi: 10.1021/jacs.7b04448. PubMed DOI
Tatum L. A. Foy J. T. Aprahamian I. J. Am. Chem. Soc. 2014;136:17438–17441. doi: 10.1021/ja511135k. PubMed DOI
Samanta S. Beharry A. A. Sadovski O. McCormick T. M. Babalhavaeji A. Tropepe V. Woolley G. A. J. Am. Chem. Soc. 2013;135:9777–9784. doi: 10.1021/ja402220t. PubMed DOI
Wiedbrauk S. Dube H. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI