• This record comes from PubMed

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

. 2019 Jun 03 ; 10 (1) : 2390. [epub] 20190603

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
723.014.001 Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) - International

Links

PubMed 31160552
PubMed Central PMC6546742
DOI 10.1038/s41467-019-10251-8
PII: 10.1038/s41467-019-10251-8
Knihovny.cz E-resources

Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions.

See more in PubMed

Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011;40:4422–4437. doi: 10.1039/c1cs15023e. PubMed DOI

Szymanski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI

Bléger D, Hecht S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 2015;54:11338–11349. doi: 10.1002/anie.201500628. PubMed DOI

Harris JD, Moran MJ, Aprahamian I. New molecular switch architectures. Proc. Natl. Acad. Sci. 2018;115:9414–9422. doi: 10.1073/pnas.1714499115. PubMed DOI PMC

Hoorens MWH, Szymanski W. Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 2018;43:567–575. doi: 10.1016/j.tibs.2018.05.004. PubMed DOI

Hüll K, Morstein J, Trauner D. In vivo photopharmacology. Chem. Rev. 2018;118:10710–10747. doi: 10.1021/acs.chemrev.8b00037. PubMed DOI

Yu JJ, et al. Photo-powered stretchable nano-containers based on well-defined vesicles formed by an overcrowded alkene switch. Chem. Commun. 2016;52:12056–12059. doi: 10.1039/C6CC06458B. PubMed DOI

Senthilkumar, T. et al. Conjugated polymer nanoparticles appending photo-responsive units for controlled drug delivery, release and imaging. Angew. Chemie Int. Ed. 57, 13114–13119. (2018). PubMed

Lee IN, et al. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces. 2018;10:7765–7776. doi: 10.1021/acsami.7b18302. PubMed DOI PMC

Mart RJ, Allemann RK. Azobenzene photocontrol of peptides and proteins. Chem. Commun. 2016;52:12262–12277. doi: 10.1039/C6CC04004G. PubMed DOI

Lubbe AS, et al. Photoswitching of DNA hybridization using a molecular motor. J. Am. Chem. Soc. 2018;140:5069–5076. doi: 10.1021/jacs.7b09476. PubMed DOI PMC

Zhang X, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy. Proc. Natl Acad. Sci. USA. 2016;113:10364–10369. doi: 10.1073/pnas.1611038113. PubMed DOI PMC

Laptenok SP, et al. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat. Chem. 2018;10:845–852. doi: 10.1038/s41557-018-0073-0. PubMed DOI PMC

Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring vision to the blind with chemical photoswitches. Chem. Rev. 2018;118:10748–10773. doi: 10.1021/acs.chemrev.7b00723. PubMed DOI PMC

Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 2014;136:2178–2191. doi: 10.1021/ja413063e. PubMed DOI

Broichhagen J, Frank JA, Trauner D. A roadmap to success in photopharmacology. Acc. Chem. Res. 2015;48:1947–1960. doi: 10.1021/acs.accounts.5b00129. PubMed DOI

Lerch MM, et al. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 2016;55:10978–10999. doi: 10.1002/anie.201601931. PubMed DOI

Kneuttinger AC, et al. Artificial light regulation of an allosteric bienzyme complex by a photosensitive ligand. ChemBioChem. 2018;19:1750–1757. doi: 10.1002/cbic.201800219. PubMed DOI

Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem. Soc. Rev. 2018;47:1910–1937. doi: 10.1039/C7CS00772H. PubMed DOI

Huang CY, et al. N,N′-disubstituted indigos as readily available red-light photoswitches with tunable thermal half-Lives. J. Am. Chem. Soc. 2017;139:15205–15211. doi: 10.1021/jacs.7b08726. PubMed DOI

Wiedbrauk S, Dube H. Hemithioindigo—an emerging photoswitch. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI

Petermayer C, Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc. Chem. Res. 2018;51:1153–1163. doi: 10.1021/acs.accounts.7b00638. PubMed DOI

Sadovski O, Beharry AA, Zhang F, Woolley GA. Spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 2009;48:1484–1486. doi: 10.1002/anie.200805013. PubMed DOI

Dong M, et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI

Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 2017;139:17979–17986. doi: 10.1021/jacs.7b09281. PubMed DOI PMC

Passlick S, Richers M, Ellis-Davies GCR. Thermodynamically stable, photoreversible pharmacology in neurons with one- and two-photon excitation. Angew. Chem. Int. Ed. 2018;57:12554–12557. doi: 10.1002/anie.201807880. PubMed DOI PMC

Greb L, Lehn JM. Light-driven molecular motors: Imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 2014;136:13114–13117. doi: 10.1021/ja506034n. PubMed DOI

Greb L, Eichhöfer A, Lehn JM. Synthetic molecular motors: thermal N inversion and directional photoinduced c=n bond rotation of camphorquinone imines. Angew. Chem. - Int. Ed. 2015;54:14345–14348. doi: 10.1002/anie.201506691. PubMed DOI

Van Dijken DJ, Kovaříček P, Ihrig SP, Hecht S. Acylhydrazones as widely tunable photoswitches. J. Am. Chem. Soc. 2015;137:14982–14991. doi: 10.1021/jacs.5b09519. PubMed DOI

Qian H, Pramanik S, Aprahamian I. Photochromic hydrazone switches with extremely long thermal half-lives. J. Am. Chem. Soc. 2017;139:9140–9143. doi: 10.1021/jacs.7b04993. PubMed DOI

LI Q, Qian H, Shao B, Hughes RP, Aprahamian I. ing strain with large macrocycles and using it to tune the thermal half-lives of hydrazone photochromes. J. Am. Chem. Soc. 2018;140:11829–11835. doi: 10.1021/jacs.8b07612. PubMed DOI

Bezdrik A, Friedländer P, Koeniger P. Über einige derivate des thionaphthens. Chem. Ber. 1908;41:227–242. doi: 10.1002/cber.19080410147. DOI

Pummerer R. Über isatin-anile, derivate des thionaphtenchinons. Chem. Ber. 1910;43:1370–1376. doi: 10.1002/cber.19100430238. DOI

Soeta T, Shitaya S, Okuno T, Fujinami S, Ukaji Y. Efficient synthesis of benzothiophenes by [4+1] cycloaddition of 2-mercaptobenzaldehyde derivatives with isocyanides. Tetrahedron. 2016;72:7901–7905. doi: 10.1016/j.tet.2016.09.054. DOI

Wiedbrauk S, et al. Twisted hemithioindigo photoswitches: solvent polarity determines the type of light-induced rotations. J. Am. Chem. Soc. 2016;138:12219–12227. doi: 10.1021/jacs.6b05981. PubMed DOI

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI

Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. ix. an extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI

Marenich AV, Cramer CJ, Truhlar DG. Unviersal solvation modle based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Zweig JE, Newhouse TR. Isomer-specific hydrogen bonding as a design principle for bidirectionally quantitative and redshifted hemithioindigo photoswitches. J. Am. Chem. Soc. 2017;139:10956–10959. doi: 10.1021/jacs.7b04448. PubMed DOI

Shaabani A, Zahedi M. Semiempirical molecular orbital calculation of azobenzene: Stability study of isomers and mechanism of E/Z isomerization. J. Mol. Struct. 2000;506:257–261. doi: 10.1016/S0166-1280(00)00417-6. DOI

Lehn JM. Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. Chem. A Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI

Lehn JM. Nitrogen inversion. Dyn. Stereochem. Fortschr. der Chem. Forsch. 1970;15:311–377. doi: 10.1007/BFb0050820. DOI

Kitzig S, Thilemann M, Cordes T, Rück-braun K. Light-switchable peptides with a hemithioindigo unit: peptide design, photochromism, and optical. Spectrosc. Chem. Phys. Chem. 2016;17:1252–1263. doi: 10.1002/cphc.201501050. PubMed DOI

Otolski CJ, Raj AM, Ramamurthy V, Elles GG. Ultrafast dynamics of encapsulated molecules reveals new insights on the photoisomerization mechanism for azobenzenes. J. Phys. Chem. Lett. 2019;10:121–127. doi: 10.1021/acs.jpclett.8b03070. PubMed DOI

Johnson PJM, et al. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015;7:980–986. doi: 10.1038/nchem.2398. PubMed DOI

Nenov A, et al. UV-light-induced vibrational coherences; the key to understand kasha rulo violation in trans-azobenzene. J. Phys. Chem. Let. 2018;9:1534–1541. doi: 10.1021/acs.jpclett.8b00152. PubMed DOI

Maerz B, et al. Making fast photoswitches faster—using hammett analysis to understand the limit of donor-acceptor approaches for faster hemithioindigo photoswitches. Chem. Eur. J. 2014;20:13984–13992. doi: 10.1002/chem.201403661. PubMed DOI

Sailer Alexander, Ermer Franziska, Kraus Yvonne, Lutter Ferdinand H., Donau Carsten, Bremerich Maximilian, Ahlfeld Julia, Thorn‐Seshold Oliver. Hemithioindigos for Cellular Photopharmacology: Desymmetrised Molecular Switch Scaffolds Enabling Design Control over the Isomer‐Dependency of Potent Antimitotic Bioactivity. ChemBioChem. 2019;20(10):1305–1314. doi: 10.1002/cbic.201800752. PubMed DOI

Levine WG. Metabolism of AZO dyes: implication for detoxication and activation. Drug Metab. Rev. 1991;23:253–309. doi: 10.3109/03602539109029761. PubMed DOI

Kienzler MA, et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 2013;135:17683–17686. doi: 10.1021/ja408104w. PubMed DOI PMC

Izquierdo-Serra M, et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 2014;136:8693–8701. doi: 10.1021/ja5026326. PubMed DOI PMC

Laurent AD, Jacquemin D. TD-DFT benchmarks: a review. Int. J. Quantum Chem. 2013;113:2019–2039. doi: 10.1002/qua.24438. DOI

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C, Yang W, Parr GR. Development of the Colic-Salvetti correlation-energy into a functional of the electron density. Am. Phys. Soc. 1988;37:785–789. PubMed

Jamróz MH, Dobrowolski JC, Brzozowski R. Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study. J. Mol. Struct. 2006;787:172–183. doi: 10.1016/j.molstruc.2005.10.044. DOI

Jamróz Michał H. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;114:220–230. doi: 10.1016/j.saa.2013.05.096. PubMed DOI

Caricato Marco, Mennucci Benedetta, Tomasi Jacopo, Ingrosso Francesca, Cammi Roberto, Corni Stefano, Scalmani Giovanni. Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. The Journal of Chemical Physics. 2006;124(12):124520. doi: 10.1063/1.2183309. PubMed DOI

Frisch, M. et al. Gaussian09.D01. (Gaussian Inc, Wallingford, 2009).

Frisch, M. et al. Gaussian16.A03. (Gaussian Inc, Wallingford, 2009).

Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI

Henry ER. The use of matrix methods in the modeling of spectroscopic data sets. Biophys. J. 1997;72:652–673. doi: 10.1016/S0006-3495(97)78703-4. PubMed DOI PMC

Van Stokkum IHM, Larsen DS, Van Grondelle R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta. Bioenerg. 2004;1657:82–104. doi: 10.1016/j.bbabio.2004.04.011. PubMed DOI

Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 10.18637/jss.v049.i03 (2012).

Feldmeier C, Bartling H, Riedle E, Gschwind RM. LED based NMR illumination device for mechanistic studies on photochemical reactions—versatile and simple, yet surprisingly powerful. J. Magn. Reson. 2013;232:39–44. doi: 10.1016/j.jmr.2013.04.011. PubMed DOI

Bini R, Ballerini R, Pratesi G, Jodl HJ. Experimental setup for Fourier transform infrared spectroscopy studies in condensed matter at high pressure and low temperatures. Rev. Sci. Instrum. 1997;68:3154–3160. doi: 10.1063/1.1148261. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...