Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
723.014.001
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research) - International
PubMed
31160552
PubMed Central
PMC6546742
DOI
10.1038/s41467-019-10251-8
PII: 10.1038/s41467-019-10251-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions.
European Laboratory for Non Linear Spectroscopy via N Carrara 1 50019 Sesto Fiorentino Italy
INO Istituto Nazionale di Ottica Largo Fermi 6 50125 Firenze Italy
See more in PubMed
Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011;40:4422–4437. doi: 10.1039/c1cs15023e. PubMed DOI
Szymanski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 2013;113:6114–6178. doi: 10.1021/cr300179f. PubMed DOI
Bléger D, Hecht S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 2015;54:11338–11349. doi: 10.1002/anie.201500628. PubMed DOI
Harris JD, Moran MJ, Aprahamian I. New molecular switch architectures. Proc. Natl. Acad. Sci. 2018;115:9414–9422. doi: 10.1073/pnas.1714499115. PubMed DOI PMC
Hoorens MWH, Szymanski W. Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 2018;43:567–575. doi: 10.1016/j.tibs.2018.05.004. PubMed DOI
Hüll K, Morstein J, Trauner D. In vivo photopharmacology. Chem. Rev. 2018;118:10710–10747. doi: 10.1021/acs.chemrev.8b00037. PubMed DOI
Yu JJ, et al. Photo-powered stretchable nano-containers based on well-defined vesicles formed by an overcrowded alkene switch. Chem. Commun. 2016;52:12056–12059. doi: 10.1039/C6CC06458B. PubMed DOI
Senthilkumar, T. et al. Conjugated polymer nanoparticles appending photo-responsive units for controlled drug delivery, release and imaging. Angew. Chemie Int. Ed. 57, 13114–13119. (2018). PubMed
Lee IN, et al. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces. 2018;10:7765–7776. doi: 10.1021/acsami.7b18302. PubMed DOI PMC
Mart RJ, Allemann RK. Azobenzene photocontrol of peptides and proteins. Chem. Commun. 2016;52:12262–12277. doi: 10.1039/C6CC04004G. PubMed DOI
Lubbe AS, et al. Photoswitching of DNA hybridization using a molecular motor. J. Am. Chem. Soc. 2018;140:5069–5076. doi: 10.1021/jacs.7b09476. PubMed DOI PMC
Zhang X, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy. Proc. Natl Acad. Sci. USA. 2016;113:10364–10369. doi: 10.1073/pnas.1611038113. PubMed DOI PMC
Laptenok SP, et al. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat. Chem. 2018;10:845–852. doi: 10.1038/s41557-018-0073-0. PubMed DOI PMC
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring vision to the blind with chemical photoswitches. Chem. Rev. 2018;118:10748–10773. doi: 10.1021/acs.chemrev.7b00723. PubMed DOI PMC
Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 2014;136:2178–2191. doi: 10.1021/ja413063e. PubMed DOI
Broichhagen J, Frank JA, Trauner D. A roadmap to success in photopharmacology. Acc. Chem. Res. 2015;48:1947–1960. doi: 10.1021/acs.accounts.5b00129. PubMed DOI
Lerch MM, et al. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. 2016;55:10978–10999. doi: 10.1002/anie.201601931. PubMed DOI
Kneuttinger AC, et al. Artificial light regulation of an allosteric bienzyme complex by a photosensitive ligand. ChemBioChem. 2018;19:1750–1757. doi: 10.1002/cbic.201800219. PubMed DOI
Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem. Soc. Rev. 2018;47:1910–1937. doi: 10.1039/C7CS00772H. PubMed DOI
Huang CY, et al. N,N′-disubstituted indigos as readily available red-light photoswitches with tunable thermal half-Lives. J. Am. Chem. Soc. 2017;139:15205–15211. doi: 10.1021/jacs.7b08726. PubMed DOI
Wiedbrauk S, Dube H. Hemithioindigo—an emerging photoswitch. Tetrahedron Lett. 2015;56:4266–4274. doi: 10.1016/j.tetlet.2015.05.022. DOI
Petermayer C, Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc. Chem. Res. 2018;51:1153–1163. doi: 10.1021/acs.accounts.7b00638. PubMed DOI
Sadovski O, Beharry AA, Zhang F, Woolley GA. Spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 2009;48:1484–1486. doi: 10.1002/anie.200805013. PubMed DOI
Dong M, et al. Near-infrared photoswitching of azobenzenes under physiological conditions. J. Am. Chem. Soc. 2017;139:13483–13486. doi: 10.1021/jacs.7b06471. PubMed DOI
Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 2017;139:17979–17986. doi: 10.1021/jacs.7b09281. PubMed DOI PMC
Passlick S, Richers M, Ellis-Davies GCR. Thermodynamically stable, photoreversible pharmacology in neurons with one- and two-photon excitation. Angew. Chem. Int. Ed. 2018;57:12554–12557. doi: 10.1002/anie.201807880. PubMed DOI PMC
Greb L, Lehn JM. Light-driven molecular motors: Imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 2014;136:13114–13117. doi: 10.1021/ja506034n. PubMed DOI
Greb L, Eichhöfer A, Lehn JM. Synthetic molecular motors: thermal N inversion and directional photoinduced c=n bond rotation of camphorquinone imines. Angew. Chem. - Int. Ed. 2015;54:14345–14348. doi: 10.1002/anie.201506691. PubMed DOI
Van Dijken DJ, Kovaříček P, Ihrig SP, Hecht S. Acylhydrazones as widely tunable photoswitches. J. Am. Chem. Soc. 2015;137:14982–14991. doi: 10.1021/jacs.5b09519. PubMed DOI
Qian H, Pramanik S, Aprahamian I. Photochromic hydrazone switches with extremely long thermal half-lives. J. Am. Chem. Soc. 2017;139:9140–9143. doi: 10.1021/jacs.7b04993. PubMed DOI
LI Q, Qian H, Shao B, Hughes RP, Aprahamian I. ing strain with large macrocycles and using it to tune the thermal half-lives of hydrazone photochromes. J. Am. Chem. Soc. 2018;140:11829–11835. doi: 10.1021/jacs.8b07612. PubMed DOI
Bezdrik A, Friedländer P, Koeniger P. Über einige derivate des thionaphthens. Chem. Ber. 1908;41:227–242. doi: 10.1002/cber.19080410147. DOI
Pummerer R. Über isatin-anile, derivate des thionaphtenchinons. Chem. Ber. 1910;43:1370–1376. doi: 10.1002/cber.19100430238. DOI
Soeta T, Shitaya S, Okuno T, Fujinami S, Ukaji Y. Efficient synthesis of benzothiophenes by [4+1] cycloaddition of 2-mercaptobenzaldehyde derivatives with isocyanides. Tetrahedron. 2016;72:7901–7905. doi: 10.1016/j.tet.2016.09.054. DOI
Wiedbrauk S, et al. Twisted hemithioindigo photoswitches: solvent polarity determines the type of light-induced rotations. J. Am. Chem. Soc. 2016;138:12219–12227. doi: 10.1021/jacs.6b05981. PubMed DOI
Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Ditchfield R, Hehre WJ, Pople JA. Self‐consistent molecular‐orbital methods. ix. an extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728. doi: 10.1063/1.1674902. DOI
Marenich AV, Cramer CJ, Truhlar DG. Unviersal solvation modle based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Zweig JE, Newhouse TR. Isomer-specific hydrogen bonding as a design principle for bidirectionally quantitative and redshifted hemithioindigo photoswitches. J. Am. Chem. Soc. 2017;139:10956–10959. doi: 10.1021/jacs.7b04448. PubMed DOI
Shaabani A, Zahedi M. Semiempirical molecular orbital calculation of azobenzene: Stability study of isomers and mechanism of E/Z isomerization. J. Mol. Struct. 2000;506:257–261. doi: 10.1016/S0166-1280(00)00417-6. DOI
Lehn JM. Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. Chem. A Eur. J. 2006;12:5910–5915. doi: 10.1002/chem.200600489. PubMed DOI
Lehn JM. Nitrogen inversion. Dyn. Stereochem. Fortschr. der Chem. Forsch. 1970;15:311–377. doi: 10.1007/BFb0050820. DOI
Kitzig S, Thilemann M, Cordes T, Rück-braun K. Light-switchable peptides with a hemithioindigo unit: peptide design, photochromism, and optical. Spectrosc. Chem. Phys. Chem. 2016;17:1252–1263. doi: 10.1002/cphc.201501050. PubMed DOI
Otolski CJ, Raj AM, Ramamurthy V, Elles GG. Ultrafast dynamics of encapsulated molecules reveals new insights on the photoisomerization mechanism for azobenzenes. J. Phys. Chem. Lett. 2019;10:121–127. doi: 10.1021/acs.jpclett.8b03070. PubMed DOI
Johnson PJM, et al. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015;7:980–986. doi: 10.1038/nchem.2398. PubMed DOI
Nenov A, et al. UV-light-induced vibrational coherences; the key to understand kasha rulo violation in trans-azobenzene. J. Phys. Chem. Let. 2018;9:1534–1541. doi: 10.1021/acs.jpclett.8b00152. PubMed DOI
Maerz B, et al. Making fast photoswitches faster—using hammett analysis to understand the limit of donor-acceptor approaches for faster hemithioindigo photoswitches. Chem. Eur. J. 2014;20:13984–13992. doi: 10.1002/chem.201403661. PubMed DOI
Sailer Alexander, Ermer Franziska, Kraus Yvonne, Lutter Ferdinand H., Donau Carsten, Bremerich Maximilian, Ahlfeld Julia, Thorn‐Seshold Oliver. Hemithioindigos for Cellular Photopharmacology: Desymmetrised Molecular Switch Scaffolds Enabling Design Control over the Isomer‐Dependency of Potent Antimitotic Bioactivity. ChemBioChem. 2019;20(10):1305–1314. doi: 10.1002/cbic.201800752. PubMed DOI
Levine WG. Metabolism of AZO dyes: implication for detoxication and activation. Drug Metab. Rev. 1991;23:253–309. doi: 10.3109/03602539109029761. PubMed DOI
Kienzler MA, et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 2013;135:17683–17686. doi: 10.1021/ja408104w. PubMed DOI PMC
Izquierdo-Serra M, et al. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J. Am. Chem. Soc. 2014;136:8693–8701. doi: 10.1021/ja5026326. PubMed DOI PMC
Laurent AD, Jacquemin D. TD-DFT benchmarks: a review. Int. J. Quantum Chem. 2013;113:2019–2039. doi: 10.1002/qua.24438. DOI
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C, Yang W, Parr GR. Development of the Colic-Salvetti correlation-energy into a functional of the electron density. Am. Phys. Soc. 1988;37:785–789. PubMed
Jamróz MH, Dobrowolski JC, Brzozowski R. Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study. J. Mol. Struct. 2006;787:172–183. doi: 10.1016/j.molstruc.2005.10.044. DOI
Jamróz Michał H. Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;114:220–230. doi: 10.1016/j.saa.2013.05.096. PubMed DOI
Caricato Marco, Mennucci Benedetta, Tomasi Jacopo, Ingrosso Francesca, Cammi Roberto, Corni Stefano, Scalmani Giovanni. Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. The Journal of Chemical Physics. 2006;124(12):124520. doi: 10.1063/1.2183309. PubMed DOI
Frisch, M. et al. Gaussian09.D01. (Gaussian Inc, Wallingford, 2009).
Frisch, M. et al. Gaussian16.A03. (Gaussian Inc, Wallingford, 2009).
Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996;104:5497–5509. doi: 10.1063/1.471789. DOI
Henry ER. The use of matrix methods in the modeling of spectroscopic data sets. Biophys. J. 1997;72:652–673. doi: 10.1016/S0006-3495(97)78703-4. PubMed DOI PMC
Van Stokkum IHM, Larsen DS, Van Grondelle R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta. Bioenerg. 2004;1657:82–104. doi: 10.1016/j.bbabio.2004.04.011. PubMed DOI
Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 10.18637/jss.v049.i03 (2012).
Feldmeier C, Bartling H, Riedle E, Gschwind RM. LED based NMR illumination device for mechanistic studies on photochemical reactions—versatile and simple, yet surprisingly powerful. J. Magn. Reson. 2013;232:39–44. doi: 10.1016/j.jmr.2013.04.011. PubMed DOI
Bini R, Ballerini R, Pratesi G, Jodl HJ. Experimental setup for Fourier transform infrared spectroscopy studies in condensed matter at high pressure and low temperatures. Rev. Sci. Instrum. 1997;68:3154–3160. doi: 10.1063/1.1148261. DOI