Stereotactic Radiosurgery With Versus Without Neoadjuvant Endovascular Embolization for Brain Arteriovenous Malformations With Associated Intracranial Aneurysms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39171929
DOI
10.1227/neu.0000000000003152
PII: 00006123-990000000-01315
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- intrakraniální aneurysma * terapie komplikace diagnostické zobrazování MeSH
- intrakraniální arteriovenózní malformace * terapie komplikace MeSH
- kombinovaná terapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- neoadjuvantní terapie metody MeSH
- radiochirurgie * metody MeSH
- retrospektivní studie MeSH
- senioři MeSH
- terapeutická embolizace * metody MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
BACKGROUND AND OBJECTIVES: Stereotactic radiosurgery (SRS) with neoadjuvant embolization is a treatment strategy for brain arteriovenous malformations (AVMs), especially for those with large nidal volume or concomitant aneurysms. The aim of this study was to assess the effects of pre-SRS embolization in AVMs with an associated intracranial aneurysm (IA). METHODS: The International Radiosurgery Research Foundation AVM database from 1987 to 2018 was retrospectively reviewed. SRS-treated AVMs with IAs were included. Patients were categorized into those treated with upfront embolization (E + SRS) vs stand-alone SRS (SRS). Primary end point was a favorable outcome (AVM obliteration + no permanent radiation-induced changes or post-SRS hemorrhage). Secondary outcomes included AVM obliteration, mortality, follow-up modified Rankin Scale, post-SRS hemorrhage, and radiation-induced changes. RESULTS: Forty four AVM patients with associated IAs were included, of which 23 (52.3%) underwent pre-SRS embolization and 21 (47.7%) SRS only. Significant differences between the E + SRS vs SRS groups were found for AVM maximum diameter (1.5 ± 0.5 vs 1.1 ± 0.4 cm 3 , P = .019) and SRS treatment volume (9.3 ± 8.3 vs 4.3 ± 3.3 cm 3 , P = .025). A favorable outcome was achieved in 45.4% of patients in the E + SRS group and 38.1% in the SRS group ( P = .625). Obliteration rates were comparable (56.5% for E + SRS vs 47.6% for SRS, P = .555), whereas a higher mortality rate was found in the SRS group (19.1% vs 0%, P = .048). After adjusting for AVM maximum diameter, SRS treatment volume, and maximum radiation dose, the likelihood of achieving favorable outcome and AVM obliteration did not differ between groups ( P = .475 and P = .820, respectively). CONCLUSION: The likelihood of a favorable outcome and AVM obliteration after SRS with neoadjuvant embolization in AVMs with concomitant IA seems to be comparable with stand-alone SRS, even after adjusting for AVM volume and SRS maximum dose. However, the increased mortality among the stand-alone SRS group and relatively low risk of embolization-related complications suggest that these patients may benefit from a combined treatment approach.
Department of Neurosurgery New York University Langone Medical Center New York New York USA
Department of Neurosurgery Penn State Hershey Medical Center Hershey Pennsylvania USA
Department of Neurosurgery Taipei Veterans General Hospital Taipei Taiwan
Department of Neurosurgery University of Louisville Louisville Kentucky USA
Department of Neurosurgery University of Pennsylvania Philadelphia Pennsylvania USA
Department of Neurosurgery University of Puerto Rico San Juan Puerto Rico USA
Department of Neurosurgery West Virginia University Morgantown West Virginia USA
Department of Radiation Oncology The Mayo Clinic Jacksonville Florida USA
Department of Radiation Oncology University of Alabama at Birmingham Birmingham Alabama USA
Department of Radiation Oncology University of Louisville Louisville Kentucky USA
Department of Stereotactic and Radiation Neurosurgery Na Homolce Hospital Prague Czech Republic
Gamma Knife Center Jewish Hospital Mayfield Clinic Cincinnati Ohio USA
School of Medicine National Yan Ming University Taipei Taiwan
Zobrazit více v PubMed
Laakso A, Hernesniemi J. Arteriovenous malformations: epidemiology and clinical presentation. Neurosurg Clin N Am. 2012;23(1):1-6.
Flores BC, Klinger DR, Rickert KL, et al. Management of intracranial aneurysms associated with arteriovenous malformations. Neurosurg Focus. 2014;37(3):e11.
Rammos SK, Gardenghi B, Bortolotti C, Cloft HJ, Lanzino G. Aneurysms associated with brain arteriovenous malformations. AJNR Am J Neuroradiol. 2016;37(11):1966-1971.
Mohr JP, Parides MK, Stapf C, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet (London, England). 2014;383(9917):614-621.
Karlsson B, Jokura H, Yang HC, et al. Clinical outcome following cerebral AVM hemorrhage. Acta Neurochir (Wien). 2020;162(7):1759-1766.
Kato Y, Dong V, Chaddad F, et al. Expert consensus on the management of brain arteriovenous malformations. Asian J Neurosurg. 2019;14(4):1074-1081.
Derdeyn CP, Zipfel GJ, Albuquerque FC, et al. Management of brain arteriovenous malformations: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48(8):e200-e224.
Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Radiosurgery for ruptured intracranial arteriovenous malformations: clinical article. J Neurosurg. 2014;121(2):470-481.
Yan D, Chen Y, Li Z, et al. Stereotactic radiosurgery with vs. without prior embolization for brain arteriovenous malformations: a propensity score matching analysis. Front Neurol. 2021;12:752164.
Redekop G, TerBrugge K, Montanera W, Willinsky R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg. 1998;89(4):539-546.
Wegner RE, Oysul K, Pollock BE, et al. A modified radiosurgery-based arteriovenous malformation grading scale and its correlation with outcomes. Int J Radiat Oncol Biol Phys. 2011;79(4):1147-1150.
Starke RM, Yen CP, Ding D, Sheehan JP. A practical grading scale for predicting outcome after radiosurgery for arteriovenous malformations: analysis of 1012 treated patients. J Neurosurg. 2013;119(4):981-987.
Kothari RU, Brott T, Broderick JP, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304-1305.
Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476-483.
Steiner L, Lindquist C, Adler JR, Torner JC, Alves W, Steiner M. Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg. 1992;77(1):1-8.
Yen CP, Matsumoto JA, Wintermark M, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations: clinical article. J Neurosurg. 2013;118(1):63-73.
Ding D, Yen CPO, Xu Z, Starke RM, Sheehan JP. Radiosurgery for low-grade intracranial arteriovenous malformations. J Neurosurg. 2014;121(2):457-467.
Byun J, Kwon DH, Lee DH, Park W, Park JC, Ahn JS. Radiosurgery for cerebral arteriovenous malformation (AVM): current treatment strategy and radiosurgical technique for large cerebral AVM. J Korean Neurosurg Soc. 2020;63(4):415-426.
Jiang Z, Zhang X, Wan X, et al. Efficacy and safety of combined endovascular embolization and stereotactic radiosurgery for patients with intracranial arteriovenous malformations: a systematic review and meta-analysis. Biomed Res Int. 2021;2021:6686167.
Plasencia A, Santillan A. Embolization and radiosurgery for arteriovenous malformations. Surg Neurol Int. 2012;3(Suppl 2):S90-S104.
Ding D, Chen CJ, Starke RM, et al. Risk of brain arteriovenous malformation hemorrhage before and after stereotactic radiosurgery: a multicenter study. Stroke. 2019;50(6):1384-1391.
Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery after embolization for arteriovenous malformations. Prog Neurol Surg. 2013;27:89-96.
Haw CS, Terbrugge K, Willinsky R, Tomlinson G. Complications of embolization of arteriovenous malformations of the brain. J Neurosurg. 2006;104(2):226-232.
Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J Neurosurg. 2011;114(3):842-849.