The Expanding Mycovirome of Aspergilli
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 HL157414
NHLBI NIH HHS - United States
NHLBI R01HL157414-01
NIH HHS - United States
LUAUS24214
Ministry of Education, Youth and Sports of the Czech Republic LUAUS24214, Czech-US INTER-EXCELLENCE program, Secondary Metabolism of Intracellular Pathogens, and CZ.02.01.01/00/22_008/0004597, Talking microbes - understanding microbial interactions within
PubMed
39194910
PubMed Central
PMC11355518
DOI
10.3390/jof10080585
PII: jof10080585
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus, Polymycovirus, Pseudomonas aeruginosa, RNA sequencing, RNA silencing, antifungal treatment, aspergillosis, hypovirulence, mycotoxins, mycovirus, mycovirus-host interactions, oxidative stress, phage therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
California Institute for Medical Research San Jose CA 95128 USA
Department of Analytical Chemistry Palacky University 17 Listopadu 2 779 00 Olomouc Czech Republic
Department of Life Sciences Imperial College London London SW7 2AZ UK
Zobrazit více v PubMed
Hollings M. Viruses associated with a die-back disease of cultivated mushroom. Nature. 1962;196:962–965. doi: 10.1038/196962a0. DOI
Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–368. doi: 10.1016/j.virol.2015.02.034. PubMed DOI
Myers J.M., James T.Y. Mycoviruses. Curr. Biol. 2022;32:R150–R155. doi: 10.1016/j.cub.2022.01.049. PubMed DOI
Villan Larios D.C., Diaz Reyes B.M., Pirovani C.P., Loguercio L.L., Santos V.C., Góes-Neto A., Fonseca P.L.C., Aguiar E.R.G.R. Exploring the mycovirus universe: Identification, diversity, and biotechnological applications. J. Fungi. 2023;9:361. doi: 10.3390/jof9030361. PubMed DOI PMC
Kondo H., Botella L., Suzuki N. Mycovirus diversity and evolution revealed/inferred from recent studies. Annu. Rev. Phytopathol. 2022;60:307–336. doi: 10.1146/annurev-phyto-021621-122122. PubMed DOI
Llorens C., Soriano B., Krupovic M. ICTV Virus Taxonomy Profile: Metaviridae. J. Gen. Virol. 2020;101:1131–1132. doi: 10.1099/jgv.0.001509. PubMed DOI PMC
Llorens C., Soriano B., Krupovic M. ICTV Virus Taxonomy Profile: Pseudoviridae. J. Gen. Virol. 2021;102:1563. doi: 10.1099/jgv.0.001563. PubMed DOI PMC
Kuhn J.H., Adkins S., Brown K., de la Torre J.C., Digiaro M., Hughes H.R., Junglen S., Lambert A.J., Maes P., Marklewitz M., et al. ICTV Virus Taxonomy Profile: Tulasviridae 2023. J. Gen. Virol. 2023;104:001933. doi: 10.1099/jgv.0.001933. PubMed DOI PMC
Varsani A., Krupovic M. Family Genomoviridae: 2021 taxonomy update. Arch. Virol. 2021;166:2911–2926. doi: 10.1007/s00705-021-05183-y. PubMed DOI
Wang X., Kotta-Loizou I., Coutts R.H., Deng H., Han Z., Hong N., Shafik K., Wang L., Guo Y., Yang M., et al. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. Mol. Plant. 2024;17:955–971. doi: 10.1016/j.molp.2024.05.003. PubMed DOI
Dolja V.V., Koonin E.V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 2018;244:36–52. doi: 10.1016/j.virusres.2017.10.020. PubMed DOI PMC
Marzano S.Y.L., Nelson B.D., Ajayi-Oyetunde O., Bradley C.A., Hughes T.J., Hartman G.L., Eastburn D.M., Domier L.L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 2016;90:6846–6863. doi: 10.1128/JVI.00357-16. PubMed DOI PMC
Shi M., Lin X.D., Tian J.H., Chen L.J., Chen X., Li C.X., Qin X.C., Li J., Cao J.P., Eden J.S., et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI
Zhang Y.Z., Shi M., Holmes E.C. Using metagenomics to characterize an expanding virosphere. Cell. 2018;172:1168–1172. doi: 10.1016/j.cell.2018.02.043. PubMed DOI
Mata C.P., Rodríguez J.M., Suzuki N., Castón J.R. Structure and assembly of double-stranded RNA mycoviruses. Adv. Virus Res. 2020;108:213–247. PubMed
Hough B., Steenkamp E., Wingfield B., Read D. Fungal viruses unveiled: A comprehensive review of mycoviruses. Viruses. 2023;15:1202. doi: 10.3390/v15051202. PubMed DOI PMC
Sato Y., Turina M., Chiba S., Okada R., Bhatti M.F., Kotta-Loizou I., Coutts R.H., Kondo H., Sabanadzovic S., Suzuki N. ICTV Virus Taxonomy Profile: Hadakaviridae 2023. J. Gen. Virol. 2023;104:001820. doi: 10.1099/jgv.0.001820. PubMed DOI
Hillman B.I., Cai G. The family Narnaviridae: Simplest of RNA viruses. Adv. Virus Res. 2013;86:149–176. PubMed
Venkataraman S., Prasad B.V.L.S., Selvarajan R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses. 2018;10:76. doi: 10.3390/v10020076. PubMed DOI PMC
Khalifa M.E., MacDiarmid R.M. A mechanically transmitted DNA mycovirus is targeted by the defence machinery of its host, Botrytis cinerea. Viruses. 2021;13:1315. doi: 10.3390/v13071315. PubMed DOI PMC
Lefkowitz E.J., Dempsey D.M., Hendrickson R.C., Orton R.J., Siddell S.G., Smith D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV) Nucleic Acids Res. 2018;46:D708–D717. doi: 10.1093/nar/gkx932. PubMed DOI PMC
Simmonds P., Adriaenssens E.M., Zerbini F.M., Abrescia N.G.A., Aiewsakun P., Alfenas-Zerbini P., Bao Y., Barylski J., Drosten C., Duffy S., et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 2023;21:e3001922. doi: 10.1371/journal.pbio.3001922. PubMed DOI PMC
Buck K.W., editor. Fungal Virology. CRC Press; Boca Raton, FL, USA: 1986. pp. 1–84.
Nuss D.L. Hypovirulence: Mycoviruses at the fungal–plant interface. Nat. Rev. Microbiol. 2005;3:632–642. doi: 10.1038/nrmicro1206. PubMed DOI
Hillman B.I., Suzuki N. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 2004;63:423–472. PubMed
Rigling D., Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Mol. Plant Pathol. 2018;19:7–20. doi: 10.1111/mpp.12542. PubMed DOI PMC
Xie J., Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 2014;52:45–68. doi: 10.1146/annurev-phyto-102313-050222. PubMed DOI
Kinsella C.M., Deijs M., Gittelbauer H., van der Hoek L., van Dijk K. Human clinical isolates of pathogenic fungi are host to diverse mycoviruses. Microbiol. Spectr. 2022;10:e01610-22. doi: 10.1128/spectrum.01610-22. PubMed DOI PMC
Ahn I.P., Lee Y.H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant Microbe Interact. 2001;14:496–507. doi: 10.1094/MPMI.2001.14.4.496. PubMed DOI
Shah U.A., Kotta-Loizou I., Fitt B.D.L., Coutts R.H.A. Mycovirus induced hypervirulence of Leptosphaeria biglobosa enhances systemic acquired resistance to Leptosphaeria maculans in Brassica napus. Mol. Plant Microbe Interact. 2020;33:98–107. doi: 10.1094/MPMI-09-19-0254-R. PubMed DOI
Olivé M., Campo S. The dsRNA mycovirus ChNRV1 causes mild hypervirulence in the fungal phytopathogen Colletotrichum higginsianum. Arch. Microbiol. 2021;203:241–249. doi: 10.1007/s00203-020-02030-7. PubMed DOI
Ejmal M.A., Holland D.J., MacDiarmid R.M., Pearson M.N. A novel chrysovirus from a clinical isolate of Aspergillus thermomutatus affects sporulation. PLoS ONE. 2018;13:e0209443. doi: 10.1371/journal.pone.0209443. PubMed DOI PMC
Filippou C., Diss R.M., Daudu J.O., Coutts R.H.A., Kotta-Loizou I. The polymycovirus-mediated growth enhancement of the entomopathogenic fungus Beauveria bassiana is dependent on carbon and nitrogen metabolism. Front. Microbiol. 2021;12:606366. doi: 10.3389/fmicb.2021.606366. PubMed DOI PMC
Shah U.A., Kotta-Loizou I., Fitt B.D.L., Coutts R.H.A. Identification, molecular characterization, and biology of a novel quadrivirus infecting the phytopathogenic fungus Leptosphaeria biglobosa. Viruses. 2019;11:9. doi: 10.3390/v11010009. PubMed DOI PMC
Craven M.G., Pawlyk D.M., Choi G.H., Nuss D.L. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence associated virus of the chestnut blight fungus. J. Virol. 1993;67:6513–6521. doi: 10.1128/jvi.67.11.6513-6521.1993. PubMed DOI PMC
Ninomiya A., Urayama S.I., Suo R., Itoi S., Fuji S.I., Moriyama H., Hagiwara D. Mycovirus-induced tenuazonic acid production in a rice blast fungus Magnaporthe oryzae. Front Microbiol. 2020;11:1641. doi: 10.3389/fmicb.2020.01641. PubMed DOI PMC
Lee K.M., Cho W.K., Yu J., Son M., Choi H., Min K., Lee Y.-W., Kim K.-H. A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. PLoS ONE. 2014;9:e100989. doi: 10.1371/journal.pone.0100989. PubMed DOI PMC
Li K., Liu D., Pan X., Yan S., Song J., Liu D., Wang Z., Xie Y., Dai J., Liu J., et al. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins. 2022;14:503. doi: 10.3390/toxins14070503. PubMed DOI PMC
Bevan E.A., Herring A.J., Mitchell D.J. Preliminary characterisation of two species of dsRNA in yeast and their relationship to the “killer” character. Nature. 1973;245:81–86. doi: 10.1038/245081b0. PubMed DOI
Patil R.H., Kotta-Loizou I., Palyzová A., Pluháček T., Coutts R.H.A., Stevens D.A., Havlíček V. Freeing Aspergillus fumigatus of polymycovirus infection renders it more resistant to competition with Pseudomonas aeruginosa due to altered iron-acquiring tactics. J. Fungi. 2021;7:497. doi: 10.3390/jof7070497. PubMed DOI PMC
Sass G., Kotta-Loizou I., Martinez M., Larwood D.J., Stevens D.A. Polymycovirus Infection Sensitizes Aspergillus fumigatus for Antifungal Effects of Nikkomycin Z. Viruses. 2023;15:197. doi: 10.3390/v15010197. PubMed DOI PMC
Niu Y., Yuan Y., Mao J., Yang Z., Cao Q., Zhang T., Wang S., Liu D. Characterization of two novel mycoviruses from Penicillium digitatum and the related fungicide resistance analysis. Sci Rep. 2018;8:5513. doi: 10.1038/s41598-018-23807-3. PubMed DOI PMC
Zhang H., Xie J., Fu Y., Cheng J., Qu Z., Zhao Z., Cheng S., Chen T., Li B., Wang Q., et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement. Mol. Plant. 2020;13:1420–1433. doi: 10.1016/j.molp.2020.08.016. PubMed DOI
Zhou L., Li X., Kotta-Loizou I., Dong K., Li S., Ni D., Hong N., Wang G., Xu W. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus. ISME J. 2021;15:1893–1906. doi: 10.1038/s41396-021-00892-3. PubMed DOI PMC
Nazik H., Kotta-Loizou I., Sass G., Coutts R.H.A., Stevens D.A. Virus infection of Aspergillus fumigatus compromises the fungus in intermicrobial competition. Viruses. 2021;13:686. doi: 10.3390/v13040686. PubMed DOI PMC
Sass G., Martinez M., Kotta-Loizou I., Stevens D. AfuPmV-1-infected Aspergillus fumigatus is more susceptible to stress than virus-free fungus. J. Fungi. 2023;9:750. doi: 10.3390/jof9070750. PubMed DOI PMC
Stevens D.A., Kotta-Loizou I., Martinez M., Coutts R.H.A., Sass G. Virus infection impairs fungal response to stress: Effect of salt. Viruses. 2023;15:718. doi: 10.3390/v15030718. PubMed DOI PMC
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. Curr. Opin. Microbiol. 2021;63:10–18. doi: 10.1016/j.mib.2021.05.007. PubMed DOI
Glass N.L., Jacobson D.J., Shiu P.K.T. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu. Rev. Genet. 2000;34:165–186. doi: 10.1146/annurev.genet.34.1.165. PubMed DOI
Biella S., Smith M.L., Aist J.R., Cortesi P., Milgroom M.G. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc. R. Soc. B. 2002;269:2269–2276. doi: 10.1098/rspb.2002.2148. PubMed DOI PMC
García-Pedrajas M., Cañizares M., Sarmiento-Villamil J.L., Jacquat A.G., Dambolena J.S. Mycoviruses in biological control: From basic research to field implementation. Phytopathology. 2019;109:1828–1839. doi: 10.1094/PHYTO-05-19-0166-RVW. PubMed DOI
Anagnostakis S.L. Biological control of chestnut blight. Science. 1982;215:466–471. doi: 10.1126/science.215.4532.466. PubMed DOI
Hai D., Li J., Jiang D., Cheng J., Fu Y., Xiao X., Yin H., Lin Y., Chen T., Li B., et al. Plants interfere with non-self recognition of a phytopathogenic fungus via proline accumulation to facilitate mycovirus transmission. Nat. Commun. 2024;15:4748. doi: 10.1038/s41467-024-49110-6. PubMed DOI PMC
Rokas A. Aspergillus. Curr. Biol. 2013;23:R187–R188. doi: 10.1016/j.cub.2013.01.021. PubMed DOI
Latgé J.P., Chamilos G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2019;33:e00140-18. doi: 10.1128/CMR.00140-18. PubMed DOI PMC
Klich M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 2007;8:713–722. doi: 10.1111/j.1364-3703.2007.00436.x. PubMed DOI
Tevz G., Bencina M., Legisa M. Enhancing itaconic acid production by Aspergillus terreus. Appl. Microbiol. Biotechnol. 2010;87:1657–1664. doi: 10.1007/s00253-010-2642-z. PubMed DOI
Li C., Zhou J., Du G., Chen J., Takahashi S., Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 2020;44:107630. doi: 10.1016/j.biotechadv.2020.107630. PubMed DOI
Banks G.T., Buck K.W., Chain E.B., Darbyshire J.E., Himmelweit F., Ratti G., Sharpe T.J., Planterose D.N. Antiviral activity of double stranded RNA from a virus isolated from Aspergillus foetidus. Nature. 1970;227:505–507. doi: 10.1038/227505a0. PubMed DOI
Kotta-Loizou I., Coutts R.H.A. Mycoviruses in Aspergilli: A comprehensive review. Front. Microbiol. 2017;8:1699. doi: 10.3389/fmicb.2017.01699. PubMed DOI PMC
Okada R., Kiyota E., Moriyama H. A simple and rapid method to purify viral dsRNA from plant tissue. J. Gen. Plant Pathol. 2015;81:103–107. doi: 10.1007/s10327-014-0575-6. DOI
Zoll J., Verweij P.E., Melchers W.J.G. Discovery and characterization of novel Aspergillus fumigatus mycoviruses. PLoS ONE. 2018;13:e0200511. doi: 10.1371/journal.pone.0200511. PubMed DOI PMC
Chiba Y., Oiki S., Yaguchi T., Urayama S.I., Hagiwara D. Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol. 2021;7:veaa101. doi: 10.1093/ve/veaa101. PubMed DOI PMC
Chiba Y., Oiki S., Zhao Y., Nagano Y., Urayama S.I., Hagiwara D. Splitting of RNA-dependent RNA polymerase is common in Narnaviridae: Identification of a type II divided RdRp from deep-sea fungal isolates. Virus Evol. 2021;7:veab095. doi: 10.1093/ve/veab095. PubMed DOI PMC
Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:veaa076. doi: 10.1093/ve/veaa076. PubMed DOI PMC
Degola F., Spadola G., Forgia M., Turina M., Dramis L., Chitarra W., Nerva L. Aspergillus goes viral: Ecological insights from the geographical distribution of the mycovirome within an Aspergillus flavus population and its possible correlation with aflatoxin biosynthesis. J. Fungi. 2021;7:833. doi: 10.3390/jof7100833. PubMed DOI PMC
Zhang Z.K., Liu H., Jia X., Xu M., Lu Y., Zou X., Li Q. A novel narnavirus from the entomogenous fungus Beauveria bassiana Vuillemin. Nov 23, 2023. [(accessed on 5 June 2024)]. PREPRINT (Version 1) Available online: https://www.researchsquare.com/article/rs-3465422/v1.
Sadiq S., Chen Y.M., Zhang Y.Z., Holmes E.C. Resolving deep evolutionary relationships within the RNA virus phylum Lenarviricota. Virus Evol. 2022;8:veac055. doi: 10.1093/ve/veac055. PubMed DOI PMC
Wolf Y.I., Silas S., Wang Y., Wu S., Bocek M., Kazlauskas D., Krupovic M., Fire A., Dolja V.V., Koonin E.V. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 2020;5:1262–1270. doi: 10.1038/s41564-020-0755-4. PubMed DOI PMC
Ayllón M.A., Turina M., Xie J., Nerva L., Marzano S.L., Donaire L., Jiang D., Consortium I.R. ICTV Virus Taxonomy Profile: Botourmiaviridae. J. Gen. Virol. 2020;101:454–455. doi: 10.1099/jgv.0.001409. PubMed DOI PMC
Lutz T., Langer G., Heinze C. Complete genome sequence of a novel alternavirus infecting the fungus Ilyonectria crassa. Arch. Virol. 2023;168:34. doi: 10.1007/s00705-022-05652-y. PubMed DOI PMC
Aoki N., Moriyama H., Kodama M., Arie T., Teraoka T., Fukuhara T. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res. 2009;140:179–187. doi: 10.1016/j.virusres.2008.12.003. PubMed DOI
Hammond T.M., Andrewski M.D., Roossinck M.J., Keller N.P. Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot. Cell. 2008;7:350–357. doi: 10.1128/EC.00356-07. PubMed DOI PMC
He H., Chen X., Li P., Qiu D., Guo L. Complete genome sequence of a Fusarium graminearum double-stranded RNA virus in a newly proposed family, Alternaviridae. Genome Announc. 2018;6:e00064-18. doi: 10.1128/genomeA.00064-18. PubMed DOI PMC
Lutz T., Japić E., Bien S., Langer G.J., Heinze C. Characterization of a novel alternavirus infecting the fungal pathogen Fusarium solani. Virus Res. 2022;317:198817. doi: 10.1016/j.virusres.2022.198817. PubMed DOI
Wu C.F., Aoki N., Takeshita N., Fukuhara T., Chiura H.X., Arie T., Kotta-Loizou I., Okada R., Komatsu K., Moriyama H. Unique terminal regions and specific deletions of the segmented double-stranded RNA genome of Alternaria alternata virus 1, in the proposed family Alternaviridae. Front. Microbiol. 2021;12:773062. doi: 10.3389/fmicb.2021.773062. PubMed DOI PMC
Zhang X., Xie Y., Zhang F., Sun H., Zhai Y., Zhang S., Yuan H., Zhou L., Gao F., Li H. Complete genome sequence of an alternavirus from the phytopathogenic fungus Fusarium incarnatum. Arch. Virol. 2019;164:923–925. doi: 10.1007/s00705-018-04128-2. PubMed DOI
Vainio E.J., Chiba S., Ghabrial S.A., Maiss E., Roossinck M., Sabanadzovic S., Suzuki N., Xie J., Nibert M., Ictv Report Consortium ICTV Virus Taxonomy Profile: Partitiviridae. J. Gen. Virol. 2018;99:17–18. doi: 10.1099/jgv.0.000985. PubMed DOI PMC
Liu W., Duns G., Chen J. Genomic characterization of a novel partitivirus infecting Aspergillus ochraceus. Virus Genes. 2008;37:322–327. doi: 10.1007/s11262-008-0265-6. PubMed DOI
Bhatti M.F., Bignell E.M., Coutts R.H.A. Complete nucleotide sequences of two dsRNAs associated with a new partitivirus infecting Aspergillus fumigatus. Arch. Virol. 2011;156:1677–1680. doi: 10.1007/s00705-011-1045-5. PubMed DOI
Filippou C., Coutts R.H.A., Stevens D.A., Sabino R., Kotta-Loizou I. Completion of the sequence of the Aspergillus fumigatus partitivirus 1 genome. Arch. Virol. 2020;165:1891–1894. doi: 10.1007/s00705-020-04660-0. PubMed DOI PMC
Jiang Y., Wang J., Yang B., Wang Q., Zhou J., Yu W. Molecular characterization of a debilitation-associated partitivirus infecting the pathogenic fungus Aspergillus flavus. Front. Microbiol. 2019;10:626. doi: 10.3389/fmicb.2019.00626. PubMed DOI PMC
Kuroki M., Yaguchi T., Urayama S.I., Hagiwara D. Experimental verification of strain-dependent relationship between mycovirus and its fungal host. Iscience. 2023;26:107337. doi: 10.1016/j.isci.2023.107337. PubMed DOI PMC
Gnanasekaran P., Chakraborty S. Biology of viral satellites and their role in pathogenesis. Curr. Opin. Virol. 2018;33:96–105. doi: 10.1016/j.coviro.2018.08.002. PubMed DOI
Shah U.A., Kotta-Loizou I., Coutts R.H.A. Sequence determination of a satellite RNA isolated from Aspergillus foetidus. Arch. Virol. 2015;160:883–885. doi: 10.1007/s00705-015-2338-x. PubMed DOI
Han Z., Liu J., Kong L., He Y., Wu H., Xu W. A special satellite-like RNA of a novel hypovirus from Pestalotiopsis fici broadens the definition of fungal satellite. PLoS Pathog. 2023;19:e1010889. doi: 10.1371/journal.ppat.1010889. PubMed DOI PMC
Liu L., Wang Q., Cheng J., Fu Y., Jiang D., Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front. Microbiol. 2015;6:406. doi: 10.3389/fmicb.2015.00406. PubMed DOI PMC
Jiang Y., Yang B., Liu X., Tian X., Wang Q., Wang B., Zhang Q., Yu W., Qi X., Jiang Y., et al. attenuates the induction of helper virus-mediated symptoms in Aspergillus flavus. Front. Microbiol. 2022;13:895844. PubMed PMC
Nibert M.L., Ghabrial S.A., Maiss E., Lesker T., Vainio E.J., Jiang D., Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 2014;188:128–141. doi: 10.1016/j.virusres.2014.04.007. PubMed DOI
Ghabrial S.A., Suzuki N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 2009;47:353–384. doi: 10.1146/annurev-phyto-080508-081932. PubMed DOI
Pinheiro A., Piontkivska D., Sequeira P., Martins T.M., Silva Pereira C. Aspergillus nidulans . Trends Microbiol. 2023;31:212–213. doi: 10.1016/j.tim.2022.09.013. PubMed DOI
Jiang Y., Yang B., Liu J., Wang Q., Zhang Q., Yu W., Hsiang T. A novel mycovirus infecting Aspergillus nidulans that is closely related to viruses in a new genus of the family Partitiviridae. Arch. Virol. 2021;166:659–664. doi: 10.1007/s00705-020-04930-x. PubMed DOI
Kotta-Loizou I., Castón J.R., Coutts R.H.A., Hillman B.I., Jiang D., Kim D.H., Moriyama H., Suzuki N., ICTV Report Consortium ICTV Virus Taxonomy Profile: Chrysoviridae. J. Gen. Virol. 2020;101:143–144. doi: 10.1099/jgv.0.001383. PubMed DOI PMC
Lutz T., Langer G.J., Heinze C. A virus from Aspergillus cibarius with features of alpha- and betachrysoviruses. Virus Genes. 2024;60:71–79. doi: 10.1007/s11262-023-02043-6. PubMed DOI PMC
Wu Z., Tian X., Liu X., Zhou J., Yu W., Qi X., Peng J., Hsiang T., Wang Q., Wu N., et al. Complete genome sequence of a novel chrysovirus infecting Aspergillus terreus. Arch. Virol. 2023;168:209. doi: 10.1007/s00705-023-05839-x. PubMed DOI
Huang X., Men P., Tang S., Lu X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr. Opin. Biotechnol. 2021;69:273–280. doi: 10.1016/j.copbio.2021.02.004. PubMed DOI
Tortorano A.M., Prigitano A., Dho G., Biraghi E., Stevens D.A., Ghannoum M., Nolard N., Viviani M.A. In vitro activity of amphotericin B against Aspergillus terreus isolates from different countries. J. Chemother. 2008;20:756–757. doi: 10.1179/joc.2008.20.6.756. PubMed DOI
Gallie D.R., Walbot V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res. 1992;20:4631–4638. doi: 10.1093/nar/20.17.4631. PubMed DOI PMC
Takahashi-Nakaguchi A., Shishido E., Yahara M., Urayama S.I., Sakai K., Chibana H., Kamei K., Moriyama H., Gonoi T. Analysis of an intrinsic mycovirus associated with reduced virulence of the human pathogenic fungus Aspergillus fumigatus. Front. Microbiol. 2020;10:3045. doi: 10.3389/fmicb.2019.03045. PubMed DOI PMC
Mertens P.P., Sangar D.V. Analysis of the terminal sequences of the genome segments of four orbiviruses. Prog. Clin. Biol. Res. 1985;178:371–387. doi: 10.1016/0042-6822(85)90445-3. PubMed DOI
Ayllon M.A., Vainio E.J. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv. Virus Res. 2023;115:1–86. PubMed
Jiang Y., Liu X., Yang B., Tian X., Liu J., Wang Q., Zhang Q., Yu W., Qi X., Hsiang T. Complete genome sequence of a novel victorivirus infecting Aspergillus niger. Arch. Virol. 2022;167:1475–1479. doi: 10.1007/s00705-022-05441-7. PubMed DOI
Li H., Havens W., Nibert M., Ghabrial S. RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (Family Totiviridae) J. Virol. 2011;85:7343–7352. doi: 10.1128/JVI.00364-11. PubMed DOI PMC
Kotta-Loizou I., Coutts R.H.A., ICGV Report Consortium ICTV Virus Taxonomy Profile: Polymycoviridae 2022. J. Gen. Virol. 2022;103:1747 . doi: 10.1099/jgv.0.001747. PubMed DOI
Kanhayuwa L., Kotta-Loizou I., Özkan S., Gunning A.P., Coutts R.H. A novel mycovirus from Aspergillus fumigatus contains four unique dsRNAs as its genome and is infectious as dsRNA. Proc. Natl. Acad. Sci. USA. 2015;112:9100–9105. doi: 10.1073/pnas.1419225112. PubMed DOI PMC
Nerva L., Forgia M., Ciuffo M., Chitarra W., Chiapello M., Vallino M., Varese G.C., Turina M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019;273:197737. doi: 10.1016/j.virusres.2019.197737. PubMed DOI
Takahashi-Nakaguchi A., Shishido E., Yahara M., Urayama S.I., Ninomiya A., Chiba Y., Sakai K., Hagiwara D., Chibana H., Moriyama H., et al. Phenotypic and molecular biological analysis of polymycovirus AfuPmV-1M from Aspergillus fumigatus: Reduced fungal virulence in a mouse infection model. Front. Microbiol. 2020;11:607795. doi: 10.3389/fmicb.2020.607795. PubMed DOI PMC
Kozlakidis Z., Herrero N., Özkan S., Kanhayuwa L., Jamal A., Bhatti M.F., Coutts R.H.A. Sequence determination of a quadripartite dsRNA virus isolated from Aspergillus foetidus. Arch. Virol. 2013;158:267–272. doi: 10.1007/s00705-012-1362-3. PubMed DOI
Sinden J., Hauser E. Report on two new mushroom diseases. Mushroom Sci. 1950;1:96–100.
van der Lende T.R., Harmsen M.C., Wessels J.G. Double-stranded RNAs and proteins associated with the 34 nm virus particles of the cultivated mushroom Agaricus bisporus. J. Gen. Virol. 1994;75:2533–2536. doi: 10.1099/0022-1317-75-9-2533. PubMed DOI
Berry E.A., Bevan E.A. A new species of double-stranded RNA from yeast. Nature. 1972;239:279–280. doi: 10.1038/239279a0. PubMed DOI
Maske B.L., Neto D.P.D.C., da Silva G.B., Lindner J.D.D., Soccol C.R., de Melo Pereira G.V. Yeast viruses and their implications in fermented foods and beverages. Curr. Opin. Food Sci. 2022;47:100879. doi: 10.1016/j.cofs.2022.100879. DOI
Mannazzu I., Domizio P., Carboni G., Zara S., Zara G., Comitini F., Budroni M., Ciani M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019;39:603–617. doi: 10.1080/07388551.2019.1601679. PubMed DOI
Hillman B.I., Turina M. Fungal Associations. Springer International Publishing; Cham, Switzerland: 2024. Viruses that affect phenotype and fitness of fungi; pp. 113–144.
Ikeda A., Chiba Y., Kuroki M., Urayama S.I., Hagiwara D. Efficient elimination of RNA mycoviruses in Aspergillus species using RdRp-inhibitors ribavirin and 2’-C-methylribonucleoside derivatives. Front. Microbiol. 2022;13:1024933. doi: 10.3389/fmicb.2022.1024933. PubMed DOI PMC
Khan H.A., Baig D.I., Bhatti M.F. An overview of mycoviral curing strategies used in evaluating fungal host fitness. Mol. Biotechnol. 2023;65:1547–1564. doi: 10.1007/s12033-023-00695-1. PubMed DOI PMC
Bhatti M.F., Jamal A., Petrou M.A., Cairns T.C., Bignell E.M., Coutts R.H.A. The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet. Biol. 2011;48:1071–1075. doi: 10.1016/j.fgb.2011.07.008. PubMed DOI
Herrero N., Zabalgogeazcoa I. Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res. 2011;160:409–413. doi: 10.1016/j.virusres.2011.06.015. PubMed DOI
van Diepeningen A.D., Debets A.J.M., Hoekstra R.F. Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genet. Biol. 2006;43:446–452. doi: 10.1016/j.fgb.2006.01.014. PubMed DOI
Ferreira J.A.G., Penner J., Moss R.B., Haagensen J.A.J., Clemons K.V., Spormann A.M., Nazik H., Cohen K., Banaei N., Carolino E., et al. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS ONE. 2015;10:e0134692. doi: 10.1371/journal.pone.0134692. PubMed DOI PMC
Özkan S., Coutts R.H.A. Aspergillus fumigatus mycovirus causes mild hypervirulent effect on pathogenicity when tested on Galleria mellonella. Fungal Genet. Biol. 2015;76:20–26. doi: 10.1016/j.fgb.2015.01.003. PubMed DOI
Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017;17:e383–e392. doi: 10.1016/S1473-3099(17)30316-X. PubMed DOI
Brown N.A., Goldman G.H. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J. Microbiol. 2016;54:243–253. doi: 10.1007/s12275-016-5510-4. PubMed DOI
Grahl N., Puttikamonkul S., Macdonald J.M., Gamcsik M.P., Ngo L.Y., Hohl T.M., Cramer R.A. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary Aspergillosis. PLoS Pathog. 2011;7:e1002145. doi: 10.1371/journal.ppat.1002145. PubMed DOI PMC
Grahl N., Shepardson K.M., Chung D., Cramer R.A. Hypoxia and fungal pathogenesis: To air or not to air? Eukaryot Cell. 2012;11:560–570. doi: 10.1128/EC.00031-12. PubMed DOI PMC
Cánovas D., Marcos J.F., Marcos A.T., Strauss J. Nitric oxide in fungi: Is there NO light at the end of the tunnel? Curr Genet. 2016;62:513–518. doi: 10.1007/s00294-016-0574-6. PubMed DOI PMC
Orciuolo E., Stanzani M., Canestraro M., Galimberti S., Carulli G., Lewis R., Petrini M., Komanduri K.V. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: Implications for the pathogenesis of invasive aspergillosis. J. Leukoc Biol. 2007;82:839–848. doi: 10.1189/jlb.0207090. PubMed DOI
Sugui J.A., Pardo J., Chang Y.C., Zarember K.A., Nardone G., Galvez E.M., Müllbacher A., Gallin J.I., Simon M.M., Kwon-Chung K.J. Gliotoxin is a virulence factor of Aspergillus fumigatus: GliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot. Cell. 2007;6:1562–1569. doi: 10.1128/EC.00141-07. PubMed DOI PMC
Guruceaga X., Ezpeleta G., Mayayo E., Sueiro-Olivares M., Abad-Diaz-De-Cerio A., Aguirre Urízar J.M., Liu H.G., Wiemann P., Bok J.W., Filler S.G., et al. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence. 2018;9:1548–1561. doi: 10.1080/21505594.2018.1526528. PubMed DOI PMC
Hatinguais R., Pradhan A., Brown G.D., Brown A.J.P., Warris A., Shekhova E. Mitochondrial Reactive Oxygen Species Regulate Immune Responses of Macrophages to Aspergillus fumigatus. Front. Immunol. 2021;12:641495. doi: 10.3389/fimmu.2021.641495. PubMed DOI PMC
Meyling N.V., Eilenberg J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control. 2007;43:145–155. doi: 10.1016/j.biocontrol.2007.07.007. DOI
Bukhari T., Takken W., Koenraadt C.J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasites Vectors. 2011;4:1–14. doi: 10.1186/1756-3305-4-23. PubMed DOI PMC
Sabino R., Ferreira J.A., Moss R.B., Valente J., Veríssimo C., Carolino E., Clemons K.V., Everson C., Banaei N., Penner J., et al. Molecular epidemiology of Aspergillus collected from cystic fibrosis patients. J. Cyst Fibros. 2015;14:474–481. doi: 10.1016/j.jcf.2014.10.005. PubMed DOI
Williams H.D., Davies J.C. Basic science for the chest physician: Pseudomonas aeruginosa and the cystic fibrosis airway. Thorax. 2012;67:465–467. doi: 10.1136/thoraxjnl-2011-201498. PubMed DOI
Zhao J., Yu W. Interaction between Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis. Peer J. 2018;6:e5931. doi: 10.7717/peerj.5931. PubMed DOI PMC
Sass G., Nazik H., Penner J., Shah H., Ansari S.R., Clemons K.V., Groleau M.C., Dietl A.M., Visca P., Haas H., et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2017;200:e00345-17. doi: 10.1093/ofid/ofx163.137. PubMed DOI PMC
Lin J., Cheng J., Wang Y., Shen X. The Pseudomonas quinolone signal (PQS): Not just for quorum sensing anymore. Front. Cell Infect. Microbiol. 2018;8:230. doi: 10.3389/fcimb.2018.00230. PubMed DOI PMC
Sass G., Ansari S.R., Dietl A.-M., Deziel E., Haas H., Stevens D.A. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS ONE. 2019;14:e0216085. doi: 10.1371/journal.pone.0216085. PubMed DOI PMC
Secor P.R., Sweere J.M., Michaels L.A., Malkovskiy A.V., Rajadas J., Lazzareschi D., Katznelson E., Arrigoni A., Braun K.R., Evanko S.P., et al. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe. 2015;18:549–559. doi: 10.1016/j.chom.2015.10.013. PubMed DOI PMC
Penner J.C., Ferreira J.A.G., Secor P.R., Sweere J., Birukova M., Joubert L.-M., Haagensen J.A.J., Garcia O., Malkovskiy A.V., Kaber G., et al. Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiology. 2016;162:1583–1594. doi: 10.1099/mic.0.000344. PubMed DOI
Nazik H., Joubert L.-M., Secor P.R., Sweere J., Bollyky P.L., Sass G., Cegelski L., Stevens D.A. Pseudomonas phage inhibition of Candida albicans. Microbiology. 2017;163:1568–1577. doi: 10.1099/mic.0.000539. PubMed DOI
Abrashev R.I., Pashova S.B., Stefanova L.N., Vassilev S.V., Dolashka-Angelova P.A., Angelova M.B. Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can. J. Microbiol. 2008;54:977–983. doi: 10.1139/W08-091. PubMed DOI
Methneni N., Ezdini K., Ben Abdeljelil N., Van Loco J., Van den Houwe K., Jabeur R., Fekih Sallem O., Jaziri A., Fernandez-Serrano M., Khdary N.H., et al. Occurrence of textile dyes and metals in tunisian textile dyeing effluent: Effects on oxidative stress status and histological changes in Balb/c Mice. Int. J. Mol. Sci. 2021;22:12568. doi: 10.3390/ijms222212568. PubMed DOI PMC
Sharwani A.A., Narayanan K.B., Khan M.E., Han S.S. Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ZnO) nanocomposites under simulated solar light irradiation. Sci. Rep. 2022;12:10017. doi: 10.1038/s41598-022-14117-w. PubMed DOI PMC
Nuskern L., Tkalec M., Ježi´c M., Katani´c Z., Krstin L., Curkovíc-Perica M. Cryphonectria hypovirus 1-induced changes of stress enzyme activity in transfected phytopathogenic fungus Cryphonectria parasitica. Microb. Ecol. 2017;74:302–311. doi: 10.1007/s00248-017-0945-7. PubMed DOI
Krishnan S., Manavathu E.K., Chandrasekar P.H. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses. 2009;52:206–222. doi: 10.1111/j.1439-0507.2008.01642.x. PubMed DOI
Shabeer S., Asad S., Jamal A., Ali A. Aflatoxin contamination, its impact and management strategies: An updated review. Toxins. 2022;14:307. doi: 10.3390/toxins14050307. PubMed DOI PMC
Luo S., Du H., Kebede H., Liu Y., Xing F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control. 2021;127:108120. doi: 10.1016/j.foodcont.2021.108120. DOI
Benkerroum N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health. 2020;17:423. doi: 10.3390/ijerph17020423. PubMed DOI PMC
Schmidt F.R., Lemke P.A., Esser K. Viral influences on aflatoxin formation by Aspergillus flavus. Appl. Microbiol. Biotechnol. 1986;24:248–252. doi: 10.1007/BF00261546. DOI
Silva V.N., Durigon E.L., de Fátima Costa Pires M., Lourenço A., de Faria M.J., Corrêa B. Time course of virus-like particles (VLPs) double-stranded rna accumulation in toxigenic and non-toxigenic strains of Aspergillus flavus. Braz. J. Microbiol. 2001;32:56–60. doi: 10.1590/S1517-83822001000100013. DOI
Nerva L., Chitarra W., Siciliano I., Gaiotti F., Ciuffo M., Forgia M., Varese G.C., Turina M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environ. Microbiol. 2019;21:1957–1968. doi: 10.1111/1462-2920.14436. PubMed DOI
Claeys L., Romano C., De Ruyck K., Wilson H., Fervers B., Korenjak M., Zavadil J., Gunter M.J., De Saeger S., De Boevre M., et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020;19:1449–1464. doi: 10.1111/1541-4337.12567. PubMed DOI
Tebbi C.K. Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. J. Fungi. 2023;9:368. doi: 10.3390/jof9030368. PubMed DOI PMC
Tebbi C.K., Badiga A., Sahakian E., Powers J.J., Achille A.N., Patel S., Migone F. Exposure to a mycovirus containing Aspergillus flavus reproduces acute lymphoblastic leukemia cell surface and genetic markers in cells from patients in remission and not controls. Cancer Treat. Res. Commun. 2021;26:100279. doi: 10.1016/j.ctarc.2020.100279. PubMed DOI
Tebbi C.K., Kotta-Loizou I., Coutts R.H.A. The Genus Aspergillus-Pathogenicity, Mycotoxin Production and Industrial Applications. IntechOpen; London, UK: 2021. Mycovirus containing Aspergillus flavus and acute lymphoblastic leukemia: Carcinogenesis beyond mycotoxin production.
Wang M.B., Smith N.A. Satellite RNA pathogens of plants: Impacts and origins-an RNA silencing perspective. Wiley Interdiscip. Rev. RNA. 2015;7:5–16. doi: 10.1002/wrna.1311. PubMed DOI
Alizon S., Hurford A., Mideo N., Van Baalen M. Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. J. Evol. Biol. 2009;22:245–259. doi: 10.1111/j.1420-9101.2008.01658.x. PubMed DOI
Agrawal N., Dasaradhi P.V.N., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA Interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. R. 2003;67:657–685. doi: 10.1128/MMBR.67.4.657-685.2003. PubMed DOI PMC
Wang J., Yang L. Current advances in antiviral RNA interference in mammals. FEBS J. 2024;291:208–216. doi: 10.1111/febs.16728. PubMed DOI
Jin L., Chen M., Xiang M., Guo Z. RNAi-based antiviral innate immunity in plants. Viruses. 2022;14:432. doi: 10.3390/v14020432. PubMed DOI PMC
Özkan S., Mohorianu I., Xu P., Dalmay T., Coutts R.H. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genom. 2017;18:1–13. doi: 10.1186/s12864-017-3773-8. PubMed DOI PMC
Segers G.C., Zhang X., Deng F., Sun Q., Nuss D.L. Evidence that RNA silencing functions as an antiviral defence mechanism in fungi. Proc. Natl. Acad. Sci. USA. 2007;104:12902–12906. doi: 10.1073/pnas.0702500104. PubMed DOI PMC
Sun Q., Choi G.H., Nuss D.L. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc. Natl. Acad. Sci. USA. 2009;106:17927–17932. doi: 10.1073/pnas.0907552106. PubMed DOI PMC
Varga J., Toth B., Vagvolgyi C. Recent advances in mycovirus research. Acta Microbiol. Immunol. Hung. 2003;50:77–94. doi: 10.1556/AMicr.50.2003.1.8. PubMed DOI
Nakayashiki H. RNA silencing in fungi: Mechanisms and applications. FEBS Lett. 2005;579:5950–5957. doi: 10.1016/j.febslet.2005.08.016. PubMed DOI
Nuss D.L. Mycoviruses, RNA silencing, and viral RNA recombination. Adv. Virus Res. 2011;80:25–48. PubMed PMC
Chiba S., Suzuki N. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus. Proc. Natl. Acad. Sci. USA. 2015;112:E4911–E4918. doi: 10.1073/pnas.1509151112. PubMed DOI PMC
Andika I.B., Jamal A., Kondo H., Suzuki N. SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing. Proc. Natl. Acad. Sci. USA. 2017;114:E3499–E3506. doi: 10.1073/pnas.1701196114. PubMed DOI PMC
Andika I.B., Kondo H., Suzuki N. Dicer functions transcriptionally and post-transcriptionally in a multilayer antiviral defense. Proc. Natl. Acad. Sci. USA. 2019;116:2274–2281. doi: 10.1073/pnas.1812407116. PubMed DOI PMC
Jiang Y., Liu X., Tian X., Zhou J., Wang Q., Wang B., Yu W., Jiang Y., Hsiang T., Qi X. RNA interference of Aspergillus flavus in response to Aspergillus flavus partitivirus 1 infection. Front. Microbiol. 2023;14:1252294. doi: 10.3389/fmicb.2023.1252294. PubMed DOI PMC
Segers G.C., van Wezel R., Zhang X., Hong Y., Nuss D.L. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot. Cell. 2006;5:896–904. doi: 10.1128/EC.00373-05. PubMed DOI PMC
Wang S., Zhang J., Nzabanita C., Zhang M., Nie J. ; Guo, L Fungal virus, FgHV1-encoded p20 suppresses RNA silencing through single-strand small RNA binding. J. Fungi. 2022;8:1171. doi: 10.3390/jof8111171. PubMed DOI PMC
Aulia A., Hyodo K., Hisano S., Kondo H., Hillman B.I., Suzuki N. Identification of an RNA silencing suppressor encoded by a symptomless fungal hypovirus, Cryphonectria hypovirus 4. Biology. 2021;10:100. doi: 10.3390/biology10020100. PubMed DOI PMC
Yu J., Park J.Y., Heo J.I., Kim K.H. The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences. Mol. Plant Pathol. 2020;21:230–243. doi: 10.1111/mpp.12895. PubMed DOI PMC
Yaegashi H., Yoshikawa N., Ito T., Kanematsu S.A. Mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix. Virology. 2013;444:409–416. doi: 10.1016/j.virol.2013.07.010. PubMed DOI
Patil R.H., Kotta-Loizou I., Palyzová A., Pluháček T., Coutts R., Stevens D.A., Havlíček V. Mycotoxin secretion by Aspergillus fumigatus as a response to mycovirus infection; Proceedings of the 10th Advances Against Aspergillosis and Mucormycosis Meeting; Virtual. 2–3 February 2022.
Patil R., Abd El-Hafeez A.A., Sass G., Stevens D.A., Palyzová A., Hsu J., Kotta-Loizou I., Havlicek V. Aspergillus fumigatus Secretes Gliotoxin in Response to Polymycovirus Infection. American Society for Mass Spectrometry; Anaheim, CA, USA: 2024.
Avendano C., Nguyen S., Kotta-Loizou I., Sass G., Roth D., Stevens D.A., Kalkum M. Polymycovirus Alteration of Virulence Factors in Aspergillus fumigatus: A Mass Spectrometric Proteomics Study. American Society for Mass Spectrometry; Anaheim, CA, USA: 2024.
Abd El-Hafeez A.A., Sass G., Stevens D.A., Havlicek V., Kotta-Loizou I., Hsu J. Mycovirus infection disrupts Aspergillus fumigatus iron acquisition through down regulation of HapX; Proceedings of the 11th Advances Against Aspergillosis and Mucormycosis; Milan, Italy. 25–27 January 2024.
Lass-Flörl C., Steixner S. The changing epidemiology of fungal infections. Mol. Aspects Med. 2023;94:101215. doi: 10.1016/j.mam.2023.101215. PubMed DOI
Lehrnbecher T., Frank C., Engels K., Kriener S., Groll A.H., Schwabe D. Trends in the post-mortem epidemiology of invasive fungal infections at a university hospital. J. Infect. 2010;61:259–265. doi: 10.1016/j.jinf.2010.06.018. PubMed DOI
Vitiello A., Ferrara F., Boccellino M., Ponzo A., Cimmino C., Comberiati E., Zovi A., Clemente S., Sabbatucci M. Antifungal drug resistance: An emergent health threat. Biomedicines. 2023;11:1063. doi: 10.3390/biomedicines11041063. PubMed DOI PMC
Loc-Carrillo C., Abedon S.T. Pros and cons of phage therapy. Bacteriophage. 2011;1:111–114. doi: 10.4161/bact.1.2.14590. PubMed DOI PMC
Waters E.M., Neill D.R., Kaman B., Sahota J.S., Clokie M.R.J., Winstanley C., Kadioglu A. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax. 2017;72:666–667. doi: 10.1136/thoraxjnl-2016-209265. PubMed DOI PMC
Alemayehu D., Casey P.G., McAuliffe O., Guinane C.M., Martin J.G., Shanahan F., Coffey A., Ross R.P., Hill C. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. mBio. 2012;3:e00029-12. doi: 10.1128/mBio.00029-12. PubMed DOI PMC
Chadha P., Katare O.P., Chhibber S. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb. Pathog. 2016;99:68–77. doi: 10.1016/j.micpath.2016.08.001. PubMed DOI
Green S.I., Kaelber J.T., Ma L., Trautner B.W., Ramig R.F., Maresso A.W. Bacteriophages from ExPEC reservoirs kill pandemic multidrug-resistant strains of clonal group ST131 in animal models of bacteremia. Sci. Rep. 2017;7:46151. doi: 10.1038/srep46151. PubMed DOI PMC
Hoyle N., Zhvaniya P., Balarjishvili N., Bolkvadze D., Nadareishvili L., Nizharadze D., Wittmann J., Rohde C., Kutateladze M. Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: A case report. Res. Microbiol. 2018;169:540–542. doi: 10.1016/j.resmic.2018.05.001. PubMed DOI
Liu D., Van Belleghem J.D., de Vries C.R., Burgener E., Chen Q., Manasherob R., Aronson J.R., Amanatullah D.F., Tamma P.D., Suh G.A. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses. 2021;13:1268. doi: 10.3390/v13071268. PubMed DOI PMC
van de Sande W.W.J., Vonk A.G. Mycovirus therapy for invasive pulmonary aspergillosis? Med. Mycol. 2019;57:S179–S188. doi: 10.1093/mmy/myy073. PubMed DOI
Casadevall A., Nosanchuk J.D., Williamson P., Rodrigues M.L. Vesicular transport across the fungal cell wall. Trends Microbiol. 2009;17:158–162. doi: 10.1016/j.tim.2008.12.005. PubMed DOI PMC
Yu X., Li B., Fu Y., Jiang D., Ghabrial S.A., Li G., Peng Y., Xie J., Cheng J., Huang J., et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc. Natl. Acad. Sci. USA. 2010;107:8387–8392. doi: 10.1073/pnas.0913535107. PubMed DOI PMC
Yu X., Li B., Fu Y., Xie J., Cheng J., Ghabrial S.A., Li G., Yi X., Jiang D. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc. Natl. Acad. Sci. USA. 2013;110:1452–1457. doi: 10.1073/pnas.1213755110. PubMed DOI PMC
van de Sande W.W.J., Lo-Ten-Foe J.R., van Belkum A., Netea M.G., Kullberg B.J., Vonk A.G. Mycoviruses: Future therapeutic agents of invasive fungal infections in humans? Eur. J. Clin. Microbiol. Infect. Dis. 2010;29:755–763. doi: 10.1007/s10096-010-0946-7. PubMed DOI
Liu G.L., Chi Z., Wang G.Y., Wang Z.P., Li Y., Chi Z.M. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit. Rev. Biotechnol. 2015;35:222–234. doi: 10.3109/07388551.2013.833582. PubMed DOI
Polonelli L., Conti S., Campani L., Fanti F. Modern Concepts in Penicillium and Aspergillus Classification. Springer; Boston, MA, USA: 1990. Biotyping of Aspergillus fumigatus and related taxa by the yeast killer system; pp. 225–233.
Polonelli L., Lorenzini R., De Bernardis F., Morace G. Potential therapeutic effect of yeast killer toxin. Mycopathologia. 1986;96:103–107. doi: 10.1007/BF00436668. PubMed DOI
Stevens D.A., Brummer E., Clemons K.V. Interferon-gamma as an antifungal. J. Infect. Dis. 2006;194:S33–S37. doi: 10.1086/505357. PubMed DOI
Eren R.O., Reverte M., Rossi M., Hartley M.A., Castiglioni P., Prevel F., Martin R., Desponds C., Lye L.F., Drexler S.K., et al. Mammalian innate immune response to a Leishmania-resident RNA virus increases macrophage survival to promote parasite persistence. Cell Host Microbe. 2016;20:318–328. doi: 10.1016/j.chom.2016.08.001. PubMed DOI PMC
Ives A., Ronet C., Prevel F., Ruzzante G., Fuertes-Marraco S., Schutz F., Zangger H., Revaz-Breton M., Lye L.F., Hickerson S.M., et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331:775–778. doi: 10.1126/science.1199326. PubMed DOI PMC
Park M., Cho Y.J., Kim D., Yang C.S., Lee S.M., Dawson T.L., Nakamizo S., Kabashima K., Lee Y.W., Jung W.H. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio. 2020;11:e01521-20. doi: 10.1128/mBio.01521-20. PubMed DOI PMC
Pettoello-Mantovani M., Nocerino A., Polonelli L., Morace G., Conti S., di Martino L., de Ritis G., Iafusco M., Guandalini S. Hansenula anomala killer toxin induces secretion and severe acute injury in the rat intestine. Gastroenterology. 1995;109:1900–1906. doi: 10.1016/0016-5085(95)90757-2. PubMed DOI
Cenci E., Mencacci A., Spreca A., Montagnoli C., Bacci A., Perruccio K., Velardi A., Magliani W., Conti S., Polonelli L., et al. Protection of killer anti-idiotypic antibodies against early invasive aspergillosis in a murine model of allogeneic T-cell-depleted bone marrow transplantation. Infect. Immun. 2002;70:2375–2382. doi: 10.1128/IAI.70.5.2375-2382.2002. PubMed DOI PMC
Córdoba L., Ruiz-Padilla A., Rodríguez-Romero J., Ayllón M.A. Construction and characterization of a Botrytis virus F infectious clone. J. Fungi. 2022;8:459. doi: 10.3390/jof8050459. PubMed DOI PMC
Zhang L., Wang S., Ruan S., Nzabanita C., Wang Y., Guo L. A mycovirus VIGS vector confers hypovirulence to a plant pathogenic fungus to control wheat FHB. Adv. Sci. 2023;10:e2302606. doi: 10.1002/advs.202302606. PubMed DOI PMC
Marzano S.Y., Hobbs H.A., Nelson B.D., Hartman G.L., Eastburn D.M., McCoppin N.K., Domier L.L. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J. Virol. 2015;89:5060–5071. doi: 10.1128/JVI.03199-14. PubMed DOI PMC
Choi G.H., Nuss D.L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science. 1992;257:800–803. doi: 10.1126/science.1496400. PubMed DOI
Moleleki N., van Heerden S.W., Wingfield M.J., Wingfield B.D., Preisig O. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl. Environ. Microbiol. 2003;69:3952–3956. doi: 10.1128/AEM.69.7.3952-3956.2003. PubMed DOI PMC
Li P., Wang S., Zhang L., Qiu D., Zhou X., Guo L. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. Sci. Adv. 2020;6:eaay9634. doi: 10.1126/sciadv.aay9634. PubMed DOI PMC