Steroidomics in Men with Schizophrenia

. 2024 Aug 10 ; 25 (16) : . [epub] 20240810

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39201417

Grantová podpora
NU20-04-1404 00389 Czech Research Health Council
MH CZ - DRO (Institute of Endocrinology - EÚ, 00023761) Czech Ministry of Health

Schizophrenia is associated with numerous abnormalities, including imbalances in all hormonal axes, among which steroids play a major role. Steroidomic studies therefore represent a promising tool for early diagnosis and appropriate treatment of schizophrenia. A total of 51 adult male schizophrenics aged 27 (22, 34) years (shown as median with quartiles) and 16 healthy controls (HCs) aged 28 (25, 32) years were enrolled into this study. Our results showed the effective differentiation of men with schizophrenia from controls based on steroidomic profiles. We also found an altered metabolic pathway from pregnenolone and its sulfate (PREG/S) to cortisol in schizophrenics with several metabolic bottlenecks such as lower PREG levels due to increased PREG sulfation and/or suppressed PREGS desulfation and attenuated conversion of 17-hydroxy-PREG to 17-hydroxy-progesterone, as well as the results suggestive of suppressed CYP11B1 activity. In contrast, steroid molar ratios suggested two counterregulatory steps involving increased conversion of PREG/S to 17-hydroxy-PREG/S and decreased conversion of cortisol to cortisone, which may maintain unchanged basal cortisol levels but may not ensure a sufficient cortisol response to stress. Our data also indicated a trend to higher 7α-, 7β-, and 16α-hydroxylation that may counteract the autoimmune complications and proinflammatory processes accompanying schizophrenia. Finally, a possible suppression of HSD17B3 activity was suggested, resulting in decreased circulating testosterone levels with increased androstenedione levels.

Zobrazit více v PubMed

Mikulska J., Juszczyk G., Gawronska-Grzywacz M., Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021;11:1298. doi: 10.3390/brainsci11101298. PubMed DOI PMC

Marder S.R., Cannon T.D. Schizophrenia. N. Engl. J. Med. 2019;381:1753–1761. doi: 10.1056/NEJMra1808803. PubMed DOI

Gogos A., Sbisa A.M., Sun J., Gibbons A., Udawela M., Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int. J. Endocrinol. 2015;2015:615356. doi: 10.1155/2015/615356. PubMed DOI PMC

McGregor C., Riordan A., Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front. Neuroendocr. 2017;47:19–33. doi: 10.1016/j.yfrne.2017.06.003. PubMed DOI

Matuszewska A., Kowalski K., Jawien P., Tomkalski T., Gawel-Dabrowska D., Merwid-Lad A., Szelag E., Blaszczak K., Wiatrak B., Danielewski M., et al. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int. J. Mol. Sci. 2023;24:6492. doi: 10.3390/ijms24076492. PubMed DOI PMC

Cai H., Cao T., Zhou X., Yao J.K. Neurosteroids in Schizophrenia: Pathogenic and Therapeutic Implications. Front. Psychiatry. 2018;9:73. doi: 10.3389/fpsyt.2018.00073. PubMed DOI PMC

MacKenzie E.M., Odontiadis J., Le Melledo J.M., Prior T.I., Baker G.B. The relevance of neuroactive steroids in schizophrenia, depression, and anxiety disorders. Cell Mol. Neurobiol. 2007;27:541–574. doi: 10.1007/s10571-006-9086-0. PubMed DOI PMC

Rao M.L., Kolsch H. Effects of estrogen on brain development and neuroprotection—Implications for negative symptoms in schizophrenia. Psychoneuroendocrinology. 2003;28((Suppl. 2)):S83–S96. doi: 10.1016/S0306-4530(02)00126-9. PubMed DOI

Dogan Bulut S., Bulut S., Guriz O. The relationship between sex hormone profiles and symptoms of schizophrenia in men. Compr. Psychiatry. 2016;69:186–192. doi: 10.1016/j.comppsych.2016.06.005. PubMed DOI

Kamin H.S., Kertes D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI

da Silva T.L., Ravindran A.V. Contribution of sex hormones to gender differences in schizophrenia: A review. Asian J. Psychiatr. 2015;18:2–14. doi: 10.1016/j.ajp.2015.07.016. PubMed DOI

Begemann M.J., Dekker C.F., van Lunenburg M., Sommer I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012;141:179–184. doi: 10.1016/j.schres.2012.08.016. PubMed DOI

Ritsner M.S. The clinical and therapeutic potentials of dehydroepiandrosterone and pregnenolone in schizophrenia. Neuroscience. 2011;191:91–100. doi: 10.1016/j.neuroscience.2011.04.017. PubMed DOI

Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC

Bicikova M., Hill M., Ripova D., Mohr P., Hampl R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J. Steroid Biochem. Mol. Biol. 2013;133:77–83. doi: 10.1016/j.jsbmb.2012.08.009. PubMed DOI

Marx C.E., Keefe R.S., Buchanan R.W., Hamer R.M., Kilts J.D., Bradford D.W., Strauss J.L., Naylor J.C., Payne V.M., Lieberman J.A., et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology. 2009;34:1885–1903. doi: 10.1038/npp.2009.26. PubMed DOI PMC

Powrie Y.S.L., Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflamm. 2018;15:289. doi: 10.1186/s12974-018-1324-0. PubMed DOI PMC

Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC

Misiak B., Frydecka D., Loska O., Moustafa A.A., Samochowiec J., Kasznia J., Stanczykiewicz B. Testosterone, DHEA and DHEA-S in patients with schizophrenia: A systematic review and meta-analysis. Psychoneuroendocrinology. 2018;89:92–102. doi: 10.1016/j.psyneuen.2018.01.007. PubMed DOI

Cherian K., Schatzberg A.F., Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr. Res. 2019;213:72–79. doi: 10.1016/j.schres.2019.07.003. PubMed DOI

Misiak B., Piotrowski P., Chec M., Samochowiec J. Cortisol and dehydroepiandrosterone sulfate in patients with schizophrenia spectrum disorders with respect to cognitive performance. Compr. Psychoneuroendocrinol. 2021;6:100041. doi: 10.1016/j.cpnec.2021.100041. PubMed DOI PMC

Ritsner M., Maayan R., Gibel A., Strous R.D., Modai I., Weizman A. Elevation of the cortisol/dehydroepiandrosterone ratio in schizophrenia patients. Eur. Neuropsychopharmacol. 2004;14:267–273. doi: 10.1016/j.euroneuro.2003.09.003. PubMed DOI

Ritsner M., Gibel A., Maayan R., Ratner Y., Ram E., Modai I., Weizman A. State and trait related predictors of serum cortisol to DHEA(S) molar ratios and hormone concentrations in schizophrenia patients. Eur. Neuropsychopharmacol. 2007;17:257–264. doi: 10.1016/j.euroneuro.2006.09.001. PubMed DOI

Oettel M., Mukhopadhyay A.K. Progesterone: The forgotten hormone in men? Aging Male. 2004;7:236–257. doi: 10.1080/13685530400004199. PubMed DOI

Belvederi Murri M., Fanelli F., Pagotto U., Bonora E., Triolo F., Chiri L., Allegri F., Mezzullo M., Menchetti M., Mondelli V., et al. Neuroactive Steroids in First-Episode Psychosis: A Role for Progesterone? Schizophr. Res. Treat. 2016;2016:1942828. doi: 10.1155/2016/1942828. PubMed DOI PMC

Ko Y.H., Jung S.W., Joe S.H., Lee C.H., Jung H.G., Jung I.K., Kim S.H., Lee M.S. Association between serum testosterone levels and the severity of negative symptoms in male patients with chronic schizophrenia. Psychoneuroendocrinology. 2007;32:385–391. doi: 10.1016/j.psyneuen.2007.02.002. PubMed DOI

Shirayama Y., Hashimoto K., Suzuki Y., Higuchi T. Correlation of plasma neurosteroid levels to the severity of negative symptoms in male patients with schizophrenia. Schizophr. Res. 2002;58:69–74. doi: 10.1016/S0920-9964(01)00367-X. PubMed DOI

Sisek-Sprem M., Krizaj A., Jukic V., Milosevic M., Petrovic Z., Herceg M. Testosterone levels and clinical features of schizophrenia with emphasis on negative symptoms and aggression. Nord J. Psychiatry. 2015;69:102–109. doi: 10.3109/08039488.2014.947320. PubMed DOI

Bicikova M., Hill M., Ripova D., Mohr P. Altered levels of circulating GABAergic 5alfa/beta-reduced pregnane and androstane steroids in schizophrenic men. Horm Mol. Biol. Clin. Investig. 2011;6:227–230. doi: 10.1515/HMBCI.2010.083. PubMed DOI

Cai H., Zhou X., Dougherty G.G., Reddy R.D., Haas G.L., Montrose D.M., Keshavan M., Yao J.K. Pregnenolone-progesterone-allopregnanolone pathway as a potential therapeutic target in first-episode antipsychotic-naive patients with schizophrenia. Psychoneuroendocrinology. 2018;90:43–51. doi: 10.1016/j.psyneuen.2018.02.004. PubMed DOI PMC

Ritsner M., Maayan R., Gibel A., Weizman A. Differences in blood pregnenolone and dehydroepiandrosterone levels between schizophrenia patients and healthy subjects. Eur. Neuropsychopharmacol. 2007;17:358–365. doi: 10.1016/j.euroneuro.2006.10.001. PubMed DOI

Ji E., Weickert C.S., Purves-Tyson T., White C., Handelsman D.J., Desai R., O’Donnell M., Liu D., Galletly C., Lenroot R., et al. Cortisol-dehydroepiandrosterone ratios are inversely associated with hippocampal and prefrontal brain volume in schizophrenia. Psychoneuroendocrinology. 2021;123:104916. doi: 10.1016/j.psyneuen.2020.104916. PubMed DOI

Peng R., Li Y. Association among serum cortisol, dehydroepiandrosterone-sulfate levels and psychiatric symptoms in men with chronic schizophrenia. Compr. Psychiatry. 2017;76:113–118. doi: 10.1016/j.comppsych.2017.03.011. PubMed DOI

Brzezinski-Sinai N.A., Brzezinski A. Schizophrenia and Sex Hormones: What Is the Link? Front. Psychiatry. 2020;11:693. doi: 10.3389/fpsyt.2020.00693. PubMed DOI PMC

Girshkin L., Matheson S.L., Shepherd A.M., Green M.J. Morning cortisol levels in schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology. 2014;49:187–206. doi: 10.1016/j.psyneuen.2014.07.013. PubMed DOI

Schiffer L., Arlt W., Storbeck K.H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol. Cell Endocrinol. 2018;465:4–26. doi: 10.1016/j.mce.2017.08.016. PubMed DOI PMC

Rege J., Nakamura Y., Wang T., Merchen T.D., Sasano H., Rainey W.E. Transcriptome profiling reveals differentially expressed transcripts between the human adrenal zona fasciculata and zona reticularis. J. Clin. Endocrinol. Metab. 2014;99:E518–E527. doi: 10.1210/jc.2013-3198. PubMed DOI PMC

Reed M.J., Purohit A., Woo L.W., Newman S.P., Potter B.V. Steroid sulfatase: Molecular biology, regulation, and inhibition. Endocr. Rev. 2005;26:171–202. doi: 10.1210/er.2004-0003. PubMed DOI

Tuckey R.C. Side-chain cleavage of cholesterol sulfate by ovarian mitochondria. J. Steroid Biochem. Mol. Biol. 1990;37:121–127. doi: 10.1016/0960-0760(90)90380-4. PubMed DOI

Neunzig J., Sanchez-Guijo A., Mosa A., Hartmann M.F., Geyer J., Wudy S.A., Bernhardt R. A steroidogenic pathway for sulfonated steroids: The metabolism of pregnenolone sulfate. J. Steroid Biochem. Mol. Biol. 2014;144 Pt B:324–333. doi: 10.1016/j.jsbmb.2014.07.005. PubMed DOI

Mondelli V. From stress to psychosis: Whom, how, when and why? Epidemiol. Psychiatr. Sci. 2014;23:215–218. doi: 10.1017/S204579601400033X. PubMed DOI PMC

Plumbly W., Brandon N., Deeb T.Z., Hall J., Harwood A.J. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci. Rep. 2019;9:13810. doi: 10.1038/s41598-019-50226-9. PubMed DOI PMC

van Rooyen D., Yadav R., Scott E.E., Swart A.C. CYP17A1 exhibits 17alphahydroxylase/17,20-lyase activity towards 11beta-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway. J. Steroid Biochem. Mol. Biol. 2020;199:105614. doi: 10.1016/j.jsbmb.2020.105614. PubMed DOI

Barnard L., du Toit T., Swart A.C. Back where it belongs: 11beta-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol. Cell Endocrinol. 2021;525:111189. doi: 10.1016/j.mce.2021.111189. PubMed DOI

Barnard L., Gent R., van Rooyen D., Swart A.C. Adrenal C11-oxy C(21) steroids contribute to the C11-oxy C(19) steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone. J. Steroid Biochem. Mol. Biol. 2017;174:86–95. doi: 10.1016/j.jsbmb.2017.07.034. PubMed DOI

Gupta M.K., Guryev O.L., Auchus R.J. 5alpha-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 2003;418:151–160. doi: 10.1016/j.abb.2003.07.003. PubMed DOI

Bottasso O., Bay M.L., Besedovsky H., del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol. 2007;66:166–175. doi: 10.1111/j.1365-3083.2007.01962.x. PubMed DOI

Du C., Khalil M.W., Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J. Immunol. 2001;167:7094–7101. doi: 10.4049/jimmunol.167.12.7094. PubMed DOI

Rontzsch A., Thoss K., Petrow P.K., Henzgen S., Brauer R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA) Inflamm. Res. 2004;53:189–198. PubMed

Tan X.D., Dou Y.C., Shi C.W., Duan R.S., Sun R.P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009;207:39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI

Choi I.S., Cui Y., Koh Y.A., Lee H.C., Cho Y.B., Won Y.H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008;23:176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC

Sudo N., Yu X.N., Kubo C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001;79:177–179. doi: 10.1016/S0165-2478(01)00285-1. PubMed DOI

Kasperska-Zajac A., Brzoza Z., Rogala B. Dehydroepiandrosterone and dehydroepiandrosterone sulphate in atopic allergy and chronic urticaria. Inflammation. 2008;31:141–145. doi: 10.1007/s10753-008-9059-1. PubMed DOI

Sterzl I., Hampl R., Sterzl J., Votruba J., Starka L. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999;71:133–137. doi: 10.1016/S0960-0760(99)00134-X. PubMed DOI

Romagnani S., Kapsenberg M., Radbruch A., Adorini L. Th1 and Th2 cells. Res. Immunol. 1998;149:871–873. doi: 10.1016/S0923-2494(99)80016-9. PubMed DOI

Pratschke S., von Dossow-Hanfstingl V., Dietz J., Schneider C.P., Tufman A., Albertsmeier M., Winter H., Angele M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014;189:117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI

Reading C.L., Frincke J.M., White S.K. Molecular targets for 17alpha-ethynyl-5-androstene-3beta,7beta,17beta-triol, an anti-inflammatory agent derived from the human metabolome. PLoS ONE. 2012;7:e32147. doi: 10.1371/journal.pone.0032147. PubMed DOI PMC

Pettersson H., Lundqvist J., Norlin M. Effects of CYP7B1-mediated catalysis on estrogen receptor activation. Biochim. Biophys. Acta. 2010;1801:1090–1097. doi: 10.1016/j.bbalip.2010.05.011. PubMed DOI

Tang W., Eggertsen G., Chiang J.Y., Norlin M. Estrogen-mediated regulation of CYP7B1: A possible role for controlling DHEA levels in human tissues. J. Steroid Biochem. Mol. Biol. 2006;100:42–51. doi: 10.1016/j.jsbmb.2006.02.005. PubMed DOI

Ahlem C.N., Page T.M., Auci D.L., Kennedy M.R., Mangano K., Nicoletti F., Ge Y., Huang Y., White S.K., Villegas S., et al. Novel components of the human metabolome: The identification, characterization and anti-inflammatory activity of two 5-androstene tetrols. Steroids. 2011;76:145–155. doi: 10.1016/j.steroids.2010.10.005. PubMed DOI

Slominski R.M., Tuckey R.C., Manna P.R., Jetten A.M., Postlethwaite A., Raman C., Slominski A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes Immun. 2020;21:150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC

Edwards C.R., Stewart P.M., Burt D., Brett L., McIntyre M.A., Sutanto W.S., de Kloet E.R., Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase--tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;2:986–989. doi: 10.1016/S0140-6736(88)90742-8. PubMed DOI

Gomez-Sanchez E.P., Gomez-Sanchez C.E. 11beta-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol. Cell Endocrinol. 2021;526:111210. doi: 10.1016/j.mce.2021.111210. PubMed DOI PMC

Hennebert O., Chalbot S., Alran S., Morfin R. Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: Possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 2007;104:326–333. doi: 10.1016/j.jsbmb.2007.03.026. PubMed DOI

Le Mee S., Hennebert O., Ferrec C., Wulfert E., Morfin R. 7beta-Hydroxy-epiandrosterone-mediated regulation of the prostaglandin synthesis pathway in human peripheral blood monocytes. Steroids. 2008;73:1148–1159. doi: 10.1016/j.steroids.2008.05.001. PubMed DOI

Tchernof A., Mansour M.F., Pelletier M., Boulet M.M., Nadeau M., Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J. Steroid Biochem. Mol. Biol. 2015;147:56–69. doi: 10.1016/j.jsbmb.2014.11.011. PubMed DOI

Nakamura Y., Hornsby P.J., Casson P., Morimoto R., Satoh F., Xing Y., Kennedy M.R., Sasano H., Rainey W.E. Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 2009;94:2192–2198. doi: 10.1210/jc.2008-2374. PubMed DOI PMC

Ostinelli G., Vijay J., Vohl M.C., Grundberg E., Tchernof A. AKR1C2 and AKR1C3 expression in adipose tissue: Association with body fat distribution and regulatory variants. Mol. Cell Endocrinol. 2021;527:111220. doi: 10.1016/j.mce.2021.111220. PubMed DOI PMC

Rizner T.L., Penning T.M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi: 10.1016/j.steroids.2013.10.012. PubMed DOI PMC

Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI

Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC

Starka L., Duskova M., Hill M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol. 2015;145:254–260. doi: 10.1016/j.jsbmb.2014.03.008. PubMed DOI

Xu C., Liu W., You X., Leimert K., Popowycz K., Fang X., Wood S.L., Slater D.M., Sun Q., Gu H., et al. PGF2alpha modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015;21:603–614. doi: 10.1093/molehr/gav018. PubMed DOI PMC

Zheng L., Fei J., Feng C.M., Xu Z., Fu L., Zhao H. Serum 8-iso-PGF2alpha Predicts the Severity and Prognosis in Patients With Community-Acquired Pneumonia: A Retrospective Cohort Study. Front. Med. 2021;8:633442. doi: 10.3389/fmed.2021.633442. PubMed DOI PMC

Sharma I., Dhaliwal L.K., Saha S.C., Sangwan S., Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 2010;94:63–70. doi: 10.1016/j.fertnstert.2009.01.141. PubMed DOI

Vallee A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/beta-Catenin Pathway. Int. J. Mol. Sci. 2022;23:2810. doi: 10.3390/ijms23052810. PubMed DOI PMC

Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Dehennin L., Peres G. Plasma and urinary markers of oral testosterone misuse by healthy men in presence of masking epitestosterone administration. Int. J. Sports Med. 1996;17:315–319. doi: 10.1055/s-2007-972853. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...