Stilbenes in Carex acuta and Carex lepidocarpa
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004635
Ministry of Education, Youth and Sports of the Czech Republic
RVO 67985939
Long-term research development project
PubMed
39202919
PubMed Central
PMC11357264
DOI
10.3390/molecules29163840
PII: molecules29163840
Knihovny.cz E-zdroje
- Klíčová slova
- Carex acuta, Carex lepidocarpa, NMR, liquid chromatography, miyabenol A and C, pallidol, trans-ɛ-viniferin,
- MeSH
- Carex (rostlina) * chemie MeSH
- hmotnostní spektrometrie MeSH
- kořeny rostlin chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- rostlinné extrakty * chemie MeSH
- stilbeny * chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné extrakty * MeSH
- stilbeny * MeSH
Stilbenes in the roots of Carex acuta and Carex lepidocarpa were studied. Root samples were extracted with 100% methanol and analyzed by HPLC and LC-MS. In this way, trans-resveratrol dimers (m/z 455 Da [M + H]+), trimers (m/z 681 Da [M + H]+) and tetramers (m/z 907 Da [M + H]+) were identified in the extracts. Using LC-NMR in stop-flow mode, pallidol and trans-ε-viniferin as dimers were identified. After the separation of individual peaks and their measurement by 1H NMR, cis and trans-miyabenol A as a tetramer and cis-miyabenol C as a trimer were identified. In the case of miyabenol A, it is a chromatographically inseparable mixture of cis and trans isomers in the ratio of 2:3 according to 1H NMR measurement. In the case of cis-miyabenol C, the Z-trans-trans-miyabenol C configuration was confirmed. The remaining unidentified peak with a practically identical UV-VIS spectrum to that of cis-miyabenol C is most likely another isomer of miyabenol C.
Zobrazit více v PubMed
Koopman J. Carex Europaea. The Genus Carex L. (Cyperaceae) in Europe, 1: Accepted Names, Hybrids, Synonyms, Distribution, Chromosome Numbers. Margraf Publishers; Weikersheim, Germany: 2011.
Schweingruber F.H., Kučerová A., Adamec L., Doležal J. Anatomic Atlas of Aquatic and Wetland Plant Stems. Springer; Berlin, Germany: 2020.
Hedrén M. Patterns of allozyme and morphological differentiation in the Carex flava complex (Cyperaceae) in Fennoscandia. Nord. J. Bot. 2002;22:257–301. doi: 10.1111/j.1756-1051.2002.tb01373.x. DOI
Blackstock N. Ph.D. Thesis. University of Lancaster; Lancaster, UK: 2007. A reassessment of Yellow Sedges—Carex flava agg. (Cyperaceae) in the British Isles.
de Moraes K.R., Souza A.T., Muška M., Hladík M., Čtvrtlíková M., Draštík V., Kolařík T., Kučerová A., Krolová M., Sajdlová Z., et al. Artificial floating islands: A promising tool to support juvenile fish in lacustrine systems. Hydrobiologia. 2023;850:1969–1984. doi: 10.1007/s10750-023-05204-8. DOI
Harris T., Klimeš A., Martínková J., Klimešová J. Herbs are not just small plants: What biomass allocation to rhizomes tells us about differences between trees and herbs. Am. J. Bot. 2023;110:e16202. doi: 10.1002/ajb2.16202. PubMed DOI
González-Sarrías A., Gromek S., Niesen D., Seeram N.P., Henry G.E. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J. Agric. Food Chem. 2011;59:8632–8638. doi: 10.1021/jf201561e. PubMed DOI
Hu J., Lin T., Gao Y., Xu J., Jiang C., Wang G., Bu G., Xu H., Chen H., Zhang Y. The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation. PLoS ONE. 2015;10:e0115973. doi: 10.1371/journal.pone.0115973. PubMed DOI PMC
Wang C., Ye X., Ding C., Zhou M., Li W., Wang Y., You Q., Zong S., Peng Q., Duanmu D., et al. Two resveratrol oligomers inhibit cathepsin L activity to suppress SARS-CoV-2 entry. J. Agric. Food Chem. 2023;71:5535–5546. doi: 10.1021/acs.jafc.2c07811. PubMed DOI
Arraki K., Totoson P., Decendit A., Badoc A., Zedet A., Jolibois J., Pudlo M., Demougeot C., Girard-Thernier C. Cyperaceae species are potential sources of natural mammalian arginase inhibitors with positive effects on vascular function. J. Nat. Prod. 2017;80:2432–2438. doi: 10.1021/acs.jnatprod.7b00197. PubMed DOI
Arraki K., Richard T., Badoc A., Pédrot E., Bisson J., Waffo-Téguo P., Mahjoub A., Mérillon J.M., Decendit A. Isolation, characterization and quantification of stilbenes from some Carex species. Rec. Nat. Prod. 2013;7:281–291.
Senda N., Kubota Y., Hoshino T., Nozaki H., Hayashi H., Nakayama M. Mass spectra of some stilbene oligomers from Carex species. J. Mass Spectrom. Soc. Jpn. 1995;43:45–51. doi: 10.5702/massspec.43.45. DOI
Fiorentino A., Ricci A., D’Abrosca B., Pacifico S., Golino A., Letizia M., Picolella S., Monaco P. Potential food additives from Carex distachya roots: Identification and in vitro antioxidant properties. J. Agric. Food Chem. 2008;56:8218–8225. doi: 10.1021/jf801603s. PubMed DOI
Suzuki K., Shimizu T., Kawabata J., Mizutani J. New 3,5,4′-trihydroxystilbene (resveratrol) oligomers from Carex fedia Nees var. miyabei (Franchet) T. Koyama (Cyperaceae) Agric. Biol. Chem. 1987;51:1003–1008.
Li L., Henry G.E., Seerman N.P. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J. Agric. Food Chem. 2009;57:7282–7287. doi: 10.1021/jf901716j. PubMed DOI
Seo H., Kim M., Kim S., Mahmud H.A., Islam M.I., Nam K.W., Cho M.L., Kwon H.-S., Song H.Y. In vitro activity of alpha-viniferin isolated from the roots of Carex humulis against Mycobacterium tuberculosis. Pulm. Pharmacol. Ther. 2017;46:41–47. doi: 10.1016/j.pupt.2017.08.003. PubMed DOI
Kawabata J., Ichikawa S., Kurihara H., Mizunati J. Kobophenol-A, a unique tetrastilbene from Carex kobomugi Ohwi (Cyperaceae) Tetrahedron Lett. 1989;30:3785–3788. doi: 10.1016/S0040-4039(01)80655-9. DOI
Meng Y., Bourne P.C., Whiting P., Šik V., Dinan L. Identification and ecdysteroid antagonist activity of three oligostilbenes from the seeds of Carex pendula (Cyperaceae) Phytochemistry. 2001;57:393–400. doi: 10.1016/S0031-9422(01)00061-9. PubMed DOI
Kurihara H., Kawabata J., Ichikawa S., Mizutani J. (-)-ɛ-viniferin and related oligostilbenes from Carex pumita Thunb. (Cyperaceae) Agric. Biol. Chem. 1990;54:1097–1099.
Niesen D.B., Ma H., Yuan T., Bach A.C., Henry G.E., Seeram N.P. Phenolic constituents of Carex vulpinoidea seeds and their tyrosinase inhibitory activities. Nat. Prod. Commun. 2015;10:491–493. doi: 10.1177/1934578X1501000328. PubMed DOI
Dávid C.Z., Hohmann J., Vasas A. Chemistry and pharmacology of Cyperaceae stilbenoids: A review. Molecules. 2021;26:2794. doi: 10.3390/molecules26092794. PubMed DOI PMC
Gajbhiye R., Sarma S.S., Kumar D., Singh S. The treasure trove of the genus Carex: A phytochemical and pharmacological review. Health Sci. Rev. 2024;10:100151. doi: 10.1016/j.hsr.2024.100151. DOI
Biais B., Krisa S., Cluzet S., Costa G.D., Waffo-Teguo P., Mérillon J.M., Richard T. Antioxidant and cytoprotective activities of grapevine stilbenes. J. Agric. Food Chem. 2017;65:4952–4960. doi: 10.1021/acs.jafc.7b01254. PubMed DOI
Soural I., Vrchotová N., Tříska J., Balík J., Horník Š., Cuřínová P., Sýkora J. Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules. 2015;20:6093–6112. doi: 10.3390/molecules20046093. PubMed DOI PMC
Mattivi F., Vrhovsek U., Malacarne G., Masuero D., Zulini L., Stefanini M., Moser C., Velasco R., Guella G. Profiling of resveratrol oligomers, important stress metabolites, accumulating in the leaves of hybrid Vitis vinifera (Merzling × Toroldego) genotypes infected with Plasmopara viticola. J. Agric. Food Chem. 2011;59:5364–5375. doi: 10.1021/jf200771y. PubMed DOI