• This record comes from PubMed

Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L

. 2015 Apr 08 ; 20 (4) : 6093-112. [epub] 20150408

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 25856060
PubMed Central PMC6272250
DOI 10.3390/molecules20046093
PII: molecules20046093
Knihovny.cz E-resources

Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V. vinifera variety Cabernet Moravia, various conditions were studied: different solvents, using powdered versus cut cane material, different extraction times, and one-step or multiple extractions. The largest concentrations found were 6030 ± 680 µg/g dry weight (d.w.) for trans-resveratrol, 2260 ± 90 µg/g d.w. for trans-ε-viniferin, and 510 ± 40 µg/g d.w. for r2-viniferin. The highest amounts of stilbenes (8500 ± 1100 µg/g d.w.) were obtained using accelerated solvent extraction in methanol.

See more in PubMed

Langcake P., Pryce R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976;9:77–86. doi: 10.1016/0048-4059(76)90077-1. DOI

Sotheeswaran S., Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry. 1993;32:1083–1092. doi: 10.1016/S0031-9422(00)95070-2. DOI

Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI

Catalgol B., Batirel S., Taga Y., Ozer N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012;3 doi: 10.3389/fphar.2012.00141. PubMed DOI PMC

Aaviksaar A., Haga M., Pussa T., Roasto M., Tsoupras G. Purification of resveratrol from vine stems. Proc. Est. Acad. Sci.-Chem. 2003;52:155–164.

Pawlus A.D., Sahli R., Bisson J., Rivière C., Delaunay J.C., Richard T., Gomès E., Bordenave L., Waffo-Téguo P., Mérillon J.M. Stilbenoid profiles of canes from Vitis and Muscadinia species. J. Agric. Food Chem. 2013;61:501–511. doi: 10.1021/jf303843z. PubMed DOI

Park E.J., Park H.J., Chung H.J., Shin Y., Min H.Y., Hong J.Y., Kang Y.J., Ahn Y.H., Pyee J.H., Lee S.K. Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J. Nutr. Biochem. 2012;23:946–952. doi: 10.1016/j.jnutbio.2011.04.021. PubMed DOI

McCormack D., McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev. 2013;2013:575482. doi: 10.1155/2013/575482. PubMed DOI PMC

Zhang L., Cui L., Zhou G., Jing H., Guo Y., Sun W. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J. Nutr. Biochem. 2013;24:903–911. doi: 10.1016/j.jnutbio.2012.06.008. PubMed DOI

Balík J., Kyseláková M., Vrchotová N., Tříska J., Kumšta M., Veverka J., Híc P., Totušek J., Lefnerová D. Relations between polyphenols content and antioxidant activity in vine grapes and leaves. Czech J. Food Sci. 2008;26:S25–S32.

Rayne S., Karacabey E., Mazza G. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crops Prod. 2008;27:335–340. doi: 10.1016/j.indcrop.2007.11.009. DOI

Vergara C., von Baer D., Mardones C., Wilkens A., Wernekinck K., Damm A., Macke S., Gorena T., Winterhalter P. Stilbene levels in grape cane of different cultivars in southern Chile: Determination by HPLC-DAD-MS/MS method. J. Agric. Food Chem. 2012;60:929–933. doi: 10.1021/jf204482c. PubMed DOI

Ha D.T., Chen Q.C., Hung T.M., Youn U.J., Ngoc T.M., Thuong P.T., Kim H.J., Seong Y.H., Min B.S., Bae K. Stilbenes and oligostilbenes from leaf and stem of Vitis amurensis and their cytotoxic activity. Arch. Pharm. Res. 2009;32:177–183. doi: 10.1007/s12272-009-1132-2. PubMed DOI

Korhammer S., Reniero F., Mattivi F. An oligostilbene from Vitis roots. Phytochemistry. 1995;38:1501–1504. doi: 10.1016/0031-9422(94)00811-7. DOI

Saputra M.A., Sirat M.H., Aminah N.S. Stilbenoids from Vitis labrusca “Isabella” stems. Chem. Natur. Comp. 2013;49:924–926. doi: 10.1007/s10600-013-0780-0. DOI

Mestrelab Research S.L., Spain, NMR program MestReNova, Version 8.1.4-12489. [(accessed on 2 April 2015)]. Available online: http://www.mestrelab.com.

Tříska J., Vrchotová N., Olejníčková J., Jílek R., Sotolář R. Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticola. Molecules. 2012;17:2773–2783. doi: 10.3390/molecules17032773. PubMed DOI PMC

Tříska J., Vrchotová N., Sýkora J., Moos M. Separation and identification of 1,2,4-trihydroxynaphthalene-1-O-glucoside in Impatiens glandulifera Royle. Molecules. 2013;18:8429–8439. doi: 10.3390/molecules18078429. PubMed DOI PMC

Smallcombe S.H., Patt S.L., Keifer P.A. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J. Magn. Reson. A. 1995;117:295–303. doi: 10.1006/jmra.1995.0759. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...