Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25856060
PubMed Central
PMC6272250
DOI
10.3390/molecules20046093
PII: molecules20046093
Knihovny.cz E-resources
- MeSH
- Time Factors MeSH
- Chemical Fractionation methods MeSH
- Canes * MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Polyphenols chemistry isolation & purification MeSH
- Plant Extracts chemistry isolation & purification MeSH
- Solvents MeSH
- Stilbenes chemistry isolation & purification MeSH
- Temperature MeSH
- Vitis chemistry MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polyphenols MeSH
- r2-viniferin MeSH Browser
- Plant Extracts MeSH
- Solvents MeSH
- Stilbenes MeSH
Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V. vinifera variety Cabernet Moravia, various conditions were studied: different solvents, using powdered versus cut cane material, different extraction times, and one-step or multiple extractions. The largest concentrations found were 6030 ± 680 µg/g dry weight (d.w.) for trans-resveratrol, 2260 ± 90 µg/g d.w. for trans-ε-viniferin, and 510 ± 40 µg/g d.w. for r2-viniferin. The highest amounts of stilbenes (8500 ± 1100 µg/g d.w.) were obtained using accelerated solvent extraction in methanol.
See more in PubMed
Langcake P., Pryce R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976;9:77–86. doi: 10.1016/0048-4059(76)90077-1. DOI
Sotheeswaran S., Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry. 1993;32:1083–1092. doi: 10.1016/S0031-9422(00)95070-2. DOI
Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI
Catalgol B., Batirel S., Taga Y., Ozer N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012;3 doi: 10.3389/fphar.2012.00141. PubMed DOI PMC
Aaviksaar A., Haga M., Pussa T., Roasto M., Tsoupras G. Purification of resveratrol from vine stems. Proc. Est. Acad. Sci.-Chem. 2003;52:155–164.
Pawlus A.D., Sahli R., Bisson J., Rivière C., Delaunay J.C., Richard T., Gomès E., Bordenave L., Waffo-Téguo P., Mérillon J.M. Stilbenoid profiles of canes from Vitis and Muscadinia species. J. Agric. Food Chem. 2013;61:501–511. doi: 10.1021/jf303843z. PubMed DOI
Park E.J., Park H.J., Chung H.J., Shin Y., Min H.Y., Hong J.Y., Kang Y.J., Ahn Y.H., Pyee J.H., Lee S.K. Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J. Nutr. Biochem. 2012;23:946–952. doi: 10.1016/j.jnutbio.2011.04.021. PubMed DOI
McCormack D., McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev. 2013;2013:575482. doi: 10.1155/2013/575482. PubMed DOI PMC
Zhang L., Cui L., Zhou G., Jing H., Guo Y., Sun W. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J. Nutr. Biochem. 2013;24:903–911. doi: 10.1016/j.jnutbio.2012.06.008. PubMed DOI
Balík J., Kyseláková M., Vrchotová N., Tříska J., Kumšta M., Veverka J., Híc P., Totušek J., Lefnerová D. Relations between polyphenols content and antioxidant activity in vine grapes and leaves. Czech J. Food Sci. 2008;26:S25–S32.
Rayne S., Karacabey E., Mazza G. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crops Prod. 2008;27:335–340. doi: 10.1016/j.indcrop.2007.11.009. DOI
Vergara C., von Baer D., Mardones C., Wilkens A., Wernekinck K., Damm A., Macke S., Gorena T., Winterhalter P. Stilbene levels in grape cane of different cultivars in southern Chile: Determination by HPLC-DAD-MS/MS method. J. Agric. Food Chem. 2012;60:929–933. doi: 10.1021/jf204482c. PubMed DOI
Ha D.T., Chen Q.C., Hung T.M., Youn U.J., Ngoc T.M., Thuong P.T., Kim H.J., Seong Y.H., Min B.S., Bae K. Stilbenes and oligostilbenes from leaf and stem of Vitis amurensis and their cytotoxic activity. Arch. Pharm. Res. 2009;32:177–183. doi: 10.1007/s12272-009-1132-2. PubMed DOI
Korhammer S., Reniero F., Mattivi F. An oligostilbene from Vitis roots. Phytochemistry. 1995;38:1501–1504. doi: 10.1016/0031-9422(94)00811-7. DOI
Saputra M.A., Sirat M.H., Aminah N.S. Stilbenoids from Vitis labrusca “Isabella” stems. Chem. Natur. Comp. 2013;49:924–926. doi: 10.1007/s10600-013-0780-0. DOI
Mestrelab Research S.L., Spain, NMR program MestReNova, Version 8.1.4-12489. [(accessed on 2 April 2015)]. Available online: http://www.mestrelab.com.
Tříska J., Vrchotová N., Olejníčková J., Jílek R., Sotolář R. Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticola. Molecules. 2012;17:2773–2783. doi: 10.3390/molecules17032773. PubMed DOI PMC
Tříska J., Vrchotová N., Sýkora J., Moos M. Separation and identification of 1,2,4-trihydroxynaphthalene-1-O-glucoside in Impatiens glandulifera Royle. Molecules. 2013;18:8429–8439. doi: 10.3390/molecules18078429. PubMed DOI PMC
Smallcombe S.H., Patt S.L., Keifer P.A. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J. Magn. Reson. A. 1995;117:295–303. doi: 10.1006/jmra.1995.0759. DOI
Stilbenes in Carex acuta and Carex lepidocarpa