Stability testing of resveratrol and viniferin obtained from Vitis vinifera L. by various extraction methods considering the industrial viewpoint
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32221407
PubMed Central
PMC7101313
DOI
10.1038/s41598-020-62603-w
PII: 10.1038/s41598-020-62603-w
Knihovny.cz E-zdroje
- MeSH
- benzofurany chemie MeSH
- hmotnostní spektrometrie metody MeSH
- resveratrol chemie MeSH
- rostlinné extrakty chemie MeSH
- stilbeny chemie MeSH
- Vitis chemie MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzofurany MeSH
- epsilon-viniferin MeSH Prohlížeč
- resveratrol MeSH
- rostlinné extrakty MeSH
- stilbeny MeSH
Solid by-products generated in the winemaking process, can comprise valuable bioactive substances such as resveratrol and viniferin, which can be used in whole range of sectors including medicine, pharmacy, cosmetic industry etc. The changes in content of those stilbenes in extracts obtained by maceration and Soxhlet extraction were monitored using newly modified and validated high-performance liquid chromatography-mass spectrometry method which was proved to be accurate, reproducible, and efficient for their determination. The yields of individual bioactive compounds isolated from winery by-products are crucially dependent on the conditions of used extraction techniques. From this point of view, stability testing including light exposure, elevated temperature, and storage for longer time periods in the solution, represents the basis for optimizing conditions of extraction methods of resveratrol and trans-ε-viniferin. High temperature is beneficial for better release of thermally more stable stilbenes such as trans-resveratrol and trans-ε-viniferin but its application for prolonged time periods can be destructive. Light stress conditions cause the formation of otherwise unavailable cis-ε-viniferin by dimerization and photoisomerization of trans- stilbenes.
Institute of Chemical Process Fundamentals of CAS v v i Rozvojová 135 Prague 6 16502 Czech Republic
University of Chemistry and Technology Prague Technická 5 Prague 6 16 628 Czech Republic
Zobrazit více v PubMed
Arvanitoyannis I, Demetrios L, Athanasios M. Potential uses and applications of treated wine waste: a review. Int. J. Food Sci. Technol. 2006;41:475–487. doi: 10.1111/j.1365-2621.2005.01111.x. DOI
Peixoto CM, et al. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018;253:132–138. doi: 10.1016/j.foodchem.2018.01.163. PubMed DOI
Guerrero RF, et al. Grapevine cane’s waste is a source of bioactive stilbenes. Ind. Crops Prod. 2016;94:884–892. doi: 10.1016/j.indcrop.2016.09.055. DOI
Zghonda N, et al. Epsilon-viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Biosci. Biotechnol. Biochem. 2012;76:954–60. doi: 10.1271/bbb.110975. PubMed DOI
Zghonda N, et al. Greater effectiveness of ε-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration. Biosci. Biotechnol. Biochem. 2011;75:1259–1267. doi: 10.1271/bbb.110022. PubMed DOI
Fu J, et al. Trans-(-)-epsilon-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem. 2012;287:24460–72. doi: 10.1074/jbc.M112.382226. PubMed DOI PMC
Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2017;1403:142–149. doi: 10.1111/nyas.13431. PubMed DOI PMC
Richard T, et al. Protective effect of epsilon-viniferin on beta-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg. Med. Chem. 2011;19:3152–5. doi: 10.1016/j.bmc.2011.04.001. PubMed DOI
Jang M, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–20. doi: 10.1126/science.275.5297.218. PubMed DOI
Sirerol JA, et al. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell. Longev. 2016;2016:3128951. doi: 10.1155/2016/3128951. PubMed DOI PMC
Uenobe F, Nakamura S, Miyazawa M. Antimutagenic effect of resveratrol against Trp-P-1. Mutat. Res. 1997;373:197–200. doi: 10.1016/S0027-5107(96)00191-1. PubMed DOI
Timmers S, Auwerx J, Schrauwen P. The journey of resveratrol from yeast to human. Aging. 2012;4:146–58. doi: 10.18632/aging.100445. PubMed DOI PMC
Zupančič Š, Lavrič Z, Kristl J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Euro. J. Pharma. Biopharma. 2015;93:196–204. doi: 10.1016/j.ejpb.2015.04.002. PubMed DOI
Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules. 2014;19:17154–72. doi: 10.3390/molecules191117154. PubMed DOI PMC
Krishnaswamy K, et al. Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera) Food Bioprocess Tech. 2013;6:441–455. doi: 10.1007/s11947-012-0800-2. DOI
Tříska J, et al. Influence of technological processes on biologically active compounds of produced grapes juices. Food Bioprocess Tech. 2016;9:421–429. doi: 10.1007/s11947-015-1637-2. DOI
Pussa T, et al. Survey of grapevine Vitis vinifera stem polyphenols by liquid chromatography-diode array detection-tandem mass spectrometry. J. Agric. Food Chem. 2006;54:7488–94. doi: 10.1021/jf061155e. PubMed DOI
Rayne S, Karacabey E, Mazza G. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crops Prod. 2008;27:335–340. doi: 10.1016/j.indcrop.2007.11.009. DOI
Pinelo M, et al. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005;53:2111–17. doi: 10.1021/jf0488110. PubMed DOI
Soural I, et al. Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules. 2015;20:6093. doi: 10.3390/molecules20046093. PubMed DOI PMC
Karacabey E, et al. Extraction of bioactive compounds from milled grape canes (Vitis vinifera) using a pressurized low-polarity water extractor. Food Bioprocess Tech. 2012;5:359–371. doi: 10.1007/s11947-009-0286-8. DOI
Tříska, J. et al. Variability in the content of trans-resveratrol, trans-ε-viniferin and r2-viniferin in grape cane of seven Vitis vinifera L. varieties during a three-year study. Molecules22 (2017). PubMed PMC
Francioso A, et al. Chemistry, stability and bioavailability of resveratrol. Med. Chem. 2014;10:237–45. doi: 10.2174/15734064113096660053. PubMed DOI
Neves AR, et al. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem. 2012;19:1663–81. doi: 10.2174/092986712799945085. PubMed DOI
Çetin ES, et al. Chemical composition of grape canes. Ind. Crops Prod. 2011;34:994–998. doi: 10.1016/j.indcrop.2011.03.004. DOI
Galmarini MV, et al. Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food Bioprocess Techn. 2013;6:3585–95. doi: 10.1007/s11947-012-1035-y. DOI
Mark L, et al. A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines. J. Chromatogr. Sci. 2005;43:445–9. doi: 10.1093/chromsci/43.9.445. PubMed DOI
Moretti M, et al. CLSI EP17-A protocol: A useful tool for better understanding the low end performance of total prostate-specific antigen assays. Clin. Chim. Acta. 2011;412:1143–45. doi: 10.1016/j.cca.2011.03.002. PubMed DOI
Broman, P. & Elder, D. Validation of analytical procedures: Text and metodology, in ICH quality guidelines: An implementation guide (eds. Teasdale, Elder, and Nim) 127-166 (John Wiley & Sons, Inc.: New York 2017).
Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI
Tambunan A, Bahtiar A, Tjandrawinata R. Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from ageratum conyoides L. leaves. Pharmacogn. J. 2017;9:767–774. doi: 10.5530/pj.2017.6.121. DOI
Lee NY, et al. Extraction and identification of bioactive compounds from agarwood leaves. IOP Conference Series: Mat. Sci. Eng. 2016;162:012028. doi: 10.1088/1757-899X/162/1/012028. DOI
Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. PubMed DOI
Barba FJ, et al. Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Techn. 2015;8:1139–1148. doi: 10.1007/s11947-015-1482-3. DOI
Kumari B, et al. Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food Bioprocess Techn. 2018;11:223–241. doi: 10.1007/s11947-017-1961-9. DOI
Mattila P, Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002;50:3660–3667. doi: 10.1021/jf020028p. PubMed DOI
Methods in Polyphenol Analysis (ed. Williamson, B. G.) (Royal Society of Chemistry 2003).
Keylor MH, et al. Synthesis of resveratrol tetramers via a stereoconvergent radical equilibrium. Science. 2016;354:1260. doi: 10.1126/science.aaj1597. PubMed DOI PMC
Szewczuk LM, et al. Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol. J. Nat. Prod. 2005;68:36–42. doi: 10.1021/np049702i. PubMed DOI
Vergara C, et al. Stilbene levels in grape cane of different cultivars in southern Chile: determination by HPLC-DAD-MS/MS method. J. Agric. Food Chem. 2012;60:929–33. doi: 10.1021/jf204482c. PubMed DOI