Electromagnetic Interference (EMI) Shielding and Thermal Management of Sandwich-Structured Carbon Fiber-Reinforced Composite (CFRC) for Electric Vehicle Battery Casings
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39204511
PubMed Central
PMC11359111
DOI
10.3390/polym16162291
PII: polym16162291
Knihovny.cz E-resources
- Keywords
- EMI shielding, Joule heating, carbon fiber-reinforced composites (CFRC), dynamic mechanical analysis, electrical vehicle battery casing, thermal insulation properties,
- Publication type
- Journal Article MeSH
In response to the growing demand for lightweight yet robust materials in electric vehicle (EV) battery casings, this study introduces an advanced carbon fiber-reinforced composite (CFRC). This novel material is engineered to address critical aspects of EV battery casing requirements, including mechanical strength, electromagnetic interference (EMI) shielding, and thermal management. The research strategically combines carbon composite components with copper-plated polyester non-woven fabric (CFRC/Cu) and melamine foam board (CFRC/Me) into a sandwich-structure composite plus a series of composites with graphite particle-integrated matrix resin (CFRC+Gr). Dynamic mechanical analysis (DMA) revealed that the inclusion of copper-plated fabric significantly enhanced the stiffness, and the specific tensile strength of the new composites reached 346.8 MPa/(g/cm3), which was higher than that of other metal materials used for EV battery casings. The new developed composites had excellent EMI shielding properties, with the highest shielding effectives of 88.27 dB from 30 MHz to 3 GHz. Furthermore, after integrating the graphite particles, the peak temperature of all composites via Joule heating was increased. The CFRC+Gr/Me reached 68.3 °C under a 5 V DC power supply after 180 s. This research presents a comprehensive and innovative approach that adeptly balances mechanical, electromagnetic, and thermal requirements for EV battery casings.
See more in PubMed
Goswami M., Kumar S., Siddiqui H., Chauhan V., Singh N., Sathish N., Ashiq M., Kumar S. 22—Electric Vehicles: A Step toward Sustainability. In: Prabhansu, Kumar N., editors. Emerging Trends in Energy Storage Systems and Industrial Applications. Academic Press; Cambridge, MA, USA: 2023. pp. 619–640.
Gupta P., Toksha B., Patel B., Rushiya Y., Das P., Rahaman M. Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chem. Rec. 2022;22:e202200186. doi: 10.1002/tcr.202200186. PubMed DOI
Maske P., Chel P.A., Goyal P.K., Kaushik D.G. Sustainable Perspective of Electric Vehicles and Its Future Prospects. J. Sustain. Mater. Process. Manag. 2021;1:17–32. doi: 10.30880/jsmpm.2021.01.01.003. DOI
Kumar P., Srivastava K.N., Dhar A. Role of Electric Vehicles in Future Road Transport. In: Gautam A., De S., Dhar A., Gupta J.G., Pandey A., editors. Sustainable Energy and Transportation: Technologies and Policy. Springer; Singapore: 2018. pp. 43–60. Energy, Environment, and Sustainability.
Un-Noor F., Padmanaban S., Mihet-Popa L., Mollah M.N., Hossain E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies. 2017;10:1217. doi: 10.3390/en10081217. DOI
Van Mierlo J., Berecibar M., El Baghdadi M., De Cauwer C., Messagie M., Coosemans T., Jacobs V.A., Hegazy O. Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies. World Electr. Veh. J. 2021;12:20. doi: 10.3390/wevj12010020. DOI
Rizzoni G., Ahmed Q., Arasu M., Oruganti P.S. Transformational Technologies Reshaping Transportation—An Academia Perspective. SAE International; Warrendale, PA, USA: 2019.
Buckingham R., Asset T., Atanassov P. Aluminum-Air Batteries: A Review of Alloys, Electrolytes and Design. J. Power Sources. 2021;498:229762. doi: 10.1016/j.jpowsour.2021.229762. DOI
Sadeghian A., Iqbal N. A Review on Dissimilar Laser Welding of Steel-Copper, Steel-Aluminum, Aluminum-Copper, and Steel-Nickel for Electric Vehicle Battery Manufacturing. Opt. Laser Technol. 2022;146:107595. doi: 10.1016/j.optlastec.2021.107595. DOI
Sun G., Jia C., Zhang J., Yang W., Ma Z., Shao G., Qin X. Effectively Enhance High Voltage Stability of LiNi1/3Co1/3Mn1/3O2 Cathode Material with Excellent Energy Density via La2O3 Surface Modified. Ionics. 2019;25:2007–2016. doi: 10.1007/s11581-018-2621-4. DOI
Cherat N., Rijnkels M., Godthi V., Sharma H., P A., Bobba S. Thermoplastic Solution for Electric Vehicle Battery Protection. SAE International; Warrendale, PA, USA: 2022.
Choi C.-H., Cho J.-M., Kil Y., Yoon Y. Development of Polymer Composite Battery Pack Case for an Electric Vehicle. SAE International; Warrendale, PA, USA: 2013.
Maiti S., Islam M.R., Uddin M.A., Afroj S., Eichhorn S.J., Karim N. Sustainable Fiber-Reinforced Composites: A Review. Adv. Sustain. Syst. 2022;6:2200258. doi: 10.1002/adsu.202200258. DOI
Harussani M.M., Sapuan S.M., Nadeem G., Rafin T., Kirubaanand W. Recent Applications of Carbon-Based Composites in Defence Industry: A Review. Def. Technol. 2022;18:1281–1300. doi: 10.1016/j.dt.2022.03.006. DOI
Lim G.J.H., Chan K.K., Sutrisnoh N.A.A., Srinivasan M. Design of Structural Batteries: Carbon Fibers and Alternative Form Factors. Mater. Today Sustain. 2022;20:100252. doi: 10.1016/j.mtsust.2022.100252. DOI
Wang Y., Hu S., Tunáková V., Niamlang S., Chvojka J., Venkataraman M., Militký J., Khan M.Z., Ali A. Carbon Felt from Acrylic Dust Bags as Flexible EMI Shielding Layer and Resistive Heater. J. Mater. Res. Technol. 2024;28:4417–4427. doi: 10.1016/j.jmrt.2024.01.077. DOI
Sayam A., Rahman A.N.M.M., Rahman M.S., Smriti S.A., Ahmed F., Rabbi M.F., Hossain M., Faruque M.O. A Review on Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges. Carbon Lett. 2022;32:1173–1205. doi: 10.1007/s42823-022-00358-2. DOI
Hu S., Wang D., Venkataraman M., Křemenáková D., Militký J., Yang K., Wang Y., Palanisamy S. Enhanced Electromagnetic Shielding of Lightweight Copper-Coated Nonwoven Laminate with Carbon Filament Reinforcement. J. Eng. Fibers Fabr. 2023;18:15589250231199970. doi: 10.1177/15589250231199970. DOI
Silva F., Aragón M. Electromagnetic Interferences from Electric/Hybrid Vehicles; Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium; Istanbul, Turkey. 13–20 August 2011; pp. 1–4.
Wang D., Hu S., Vecernik J., Kremenakova D., Militky J., Novotna J. Impact of Different Matrix Systems on Mechanical, Thermal, and Electrical Properties of Carbon Fiber Reinforced Epoxy Resin Matrix Composites. Polym. Compos. 2024 doi: 10.1002/pc.28632. early view . DOI
Santhosh M.S., Sasikumar R., Natarajan E. E-Glass/Phenolic Matrix/APP Laminate as a Potential Candidate for Battery Casing of e-Vehicle—Experimental Investigations. Mater. Res. Express. 2021;8:045310. doi: 10.1088/2053-1591/abf8e5. DOI
Malik M., Dincer I., Rosen M.A. Review on Use of Phase Change Materials in Battery Thermal Management for Electric and Hybrid Electric Vehicles. Int. J. Energy Res. 2016;40:1011–1031. doi: 10.1002/er.3496. DOI
Gryz K., Karpowicz J., Zradziński P. Complex Electromagnetic Issues Associated with the Use of Electric Vehicles in Urban Transportation. Sensors. 2022;22:1719. doi: 10.3390/s22051719. PubMed DOI PMC
Moreno-Torres P., Lafoz M., Blanco M., R.Arribas J., Moreno-Torres P., Lafoz M., Blanco M., Arribas J.R. Modeling and Simulation for Electric Vehicle Applications. IntechOpen; London, UK: 2016. Passenger Exposure to Magnetic Fields in Electric Vehicles.
Aiello O. Electromagnetic Susceptibility of Battery Management Systems’ ICs for Electric Vehicles: Experimental Study. Electronics. 2020;9:510. doi: 10.3390/electronics9030510. DOI
Rao Z., Wang S. A Review of Power Battery Thermal Energy Management. Renew. Sustain. Energy Rev. 2011;15:4554–4571. doi: 10.1016/j.rser.2011.07.096. DOI
Wu W., Wang S., Wu W., Chen K., Hong S., Lai Y. A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management. Energy Convers. Manag. 2019;182:262–281. doi: 10.1016/j.enconman.2018.12.051. DOI
Zhang X., Li Z., Luo L., Fan Y., Du Z. A Review on Thermal Management of Lithium-Ion Batteries for Electric Vehicles. Energy. 2022;238:121652. doi: 10.1016/j.energy.2021.121652. DOI
Jaguemont J., Van Mierlo J. A Comprehensive Review of Future Thermal Management Systems for Battery-Electrified Vehicles. J. Energy Storage. 2020;31:101551. doi: 10.1016/j.est.2020.101551. DOI
Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials. ASTM International; West Conshohocken, PA, USA: 2017. [(accessed on 31 August 2022)]. Available online: https://www.astm.org/d1895-17.html.
Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM International; West Conshohocken, PA, USA: 2018. DOI
Textiles—Physiological Effects—Measurement of Thermal and Water-Vapour Resistance under Steady-State Conditions (Sweating Guarded-Hotplate Test) ISO Technical Committee; Geneva, Switzerland: 2014.
Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International Standard; West Conshohocken, PA, USA: 2017.
Tan C., Said M.R., Chen W. The Tensile Strength Effects on Precipitation Heat Treatment of 6061-T6 Aluminum Alloy; Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; San Diego, CA, USA. 30 August–2 September 2009; pp. 839–845.
Pei H.-W., Zhang S.-G., Guo H.-M., He W., Liu X.-B. Forming and Properties of 7075 Aluminum Alloy by Rheological Squeeze Casting with Transverse Mobile Injection Feed. Int. J. Adv. Manuf. Technol. 2022;119:7969–7981. doi: 10.1007/s00170-022-08750-y. DOI
Maraveas C., Fasoulakis Z.C., Tsavdaridis K.D. Mechanical Properties of High and Very High Steel at Elevated Temperatures and after Cooling Down. Fire Sci. Rev. 2017;6:3. doi: 10.1186/s40038-017-0017-6. DOI
Tian J., Jiang Z. Exploring New Strategies for Ultrahigh Strength Steel via Tailoring the Precipitates. Front. Mater. 2021;8:797798. doi: 10.3389/fmats.2021.797798. DOI
Zhang J., Wang J., Lv X. Simulation Study on the Influence of the Shielding Mechanism of the Battery Pack Shell on the Vehicle Radiation Emission. SAE International; Warrendale, PA, USA: 2021.
Mariscotti A. Harmonic and Supraharmonic Emissions of Plug-In Electric Vehicle Chargers. Smart Cities. 2022;5:496–521. doi: 10.3390/smartcities5020027. DOI
Dini P., Saponara S., Colicelli A. Overview on Battery Charging Systems for Electric Vehicles. Electronics. 2023;12:4295. doi: 10.3390/electronics12204295. DOI
Hu S., Wang D., Křemenáková D., Militký J. Washable and Breathable Ultrathin Copper-Coated Nonwoven Polyethylene Terephthalate (PET) Fabric with Chlorinated Poly-Para-Xylylene (Parylene-C) Encapsulation for Electromagnetic Interference Shielding Application. Text. Res. J. 2023;93:3982–3998. doi: 10.1177/00405175231168418. DOI
Wang D., Hu S., Kremenakova D., Militky J. The Electromagnetic Shielding Effectiveness of the Copper Plated Nonwoven Fabric and Its’ Related Comfort Properties. J. Eng. Fibers Fabr. 2022;17:15589250221133462. doi: 10.1177/15589250221133462. DOI
Wang D., Hu S., Kremenakova D., Militky J. Evaluation of the Wearing Comfort Properties for Winter Used Electromagnetic Interference Shielding Sandwich Materials. J. Ind. Text. 2023;53:15280837231159869. doi: 10.1177/15280837231159869. DOI