Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

. 2024 Feb 21 ; 11 (1) : 225. [epub] 20240221

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38383609

Grantová podpora
2013/10074 Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)
HNP2015/10037 Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)

Odkazy

PubMed 38383609
PubMed Central PMC10881584
DOI 10.1038/s41597-024-02980-3
PII: 10.1038/s41597-024-02980-3
Knihovny.cz E-zdroje

Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.

AMAP Université de Montpellier Montpellier France

Bjerknes Centre for Climate Research University of Bergen Bergen Norway

Departamento de Ecología Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile

Departamento de Ecología y Gestión Ambiental Universidad de la República Maldonado Uruguay

Departamento de Ecología y Recursos Naturales Universidad Nacional Autónoma de México Mexico City Mexico

Département de sciences biologiques Université de Montréal Montréal Canada

Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden

Department of Biological Sciences University of Bergen Bergen Norway

Department of Biology Aarhus University Aarhus Denmark

Department of Biology and Sabin Center for Environment and Sustainability Wake Forest University Winston Salem NC USA

Department of Biology University of Copenhagen Copenhagen Denmark

Department of Biology University of Oxford Oxford United Kingdom

Department of Biosciences University of Oslo Oslo Norway

Department of Botany and Biodiversity Research Centre The University of British Columbia Vancouver Canada

Department of Botany Charles University Prague Praha Czech Republic

Department of Earth and Environmental Sciences Katholieke Universiteit Leuven Leuven Belgium

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA

Department of Environmental Science Policy and Management University of California Berkeley CA USA

Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO USA

Department of Forest and Rangeland Stewardship Fort Collins CO USA

Department of Forestry and Natural Resources Purdue University West Lafayette IN USA

Department of Geography and Environmental Management University of Waterloo Waterloo Ontario Canada

Department of Systematic and Evolutionary Botany University of Zurich Zurich Switzerland

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO USA

Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales CONICET y Universidad Nacional de Cuyo Mendoza Argentina

Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Rio de Janeiro Brazil

Newcastle University Newcastle United Kingdom

Norwegian Institute for Nature Research Oslo Norway

Pontificia Universidad Católica del Peru Lima Perú

Programa de Doctorado en Ciencias mención Ecología y Evolución Universidad Austral de Chile Santiago Chile

School of Biological Sciences University of Queensland Queensland Australia

School of Geography and the Environment University of Oxford Oxford United Kingdom

School of Geography Development and Environment University of Arizona Tucson AZ USA

School of Geography Planning and Spatial Sciences University of Tasmania Hobart Tasmania Australia

School of Geosciences University of Edinburgh Edinburgh Scotland

Science Division New York Botanical Garden Bronx NY USA

Tropical Diversity Royal Botanic Garden Edinburgh Edinburgh UK

Universidad Nacional de San Antonio Abad del Cusco Cusco Perú

Zobrazit více v PubMed

Rahbek C, et al. Building mountain biodiversity: Geological and evolutionary processes. Science. 2019;365:1114–1119. doi: 10.1126/science.aax0151. PubMed DOI

CBD. Mountain Biodiversity. Convention of Biological Diversityhttps://www.cbd.int/mountain/importance.shtml (2007).

Martín-López B, et al. Nature’s contributions to people in mountains: A review. PLoS One. 2019;14:e0217847. doi: 10.1371/journal.pone.0217847. PubMed DOI PMC

Payne D, Spehn EM, Snethlage M, Fischer M. Opportunities for research on mountain biodiversity under global change. Curr. Opin. Env. Sust. 2017;29:40–47. doi: 10.1016/j.cosust.2017.11.001. DOI

Elias, S. A. Overview of Mountains (Alpine Systems): Life at the Top. in Encyclopedia of the World’s Biomes (eds. Goldstein, M. I. & DellaSala, D. A.) 251–264 (Elsevier, 2020).

Testolin R, Attorre F, Jiménez‐Alfaro B. Global distribution and bioclimatic characterization of alpine biomes. Ecography. 2020;43:779–788. doi: 10.1111/ecog.05012. DOI

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2021).

IPBES. Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2018).

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).

Shipley B, et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia. 2016;180:923–931. doi: 10.1007/s00442-016-3549-x. PubMed DOI

Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. doi: 10.1111/brv.12275. PubMed DOI

Suding KN, et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Chang. Biol. 2008;14:1125–1140. doi: 10.1111/j.1365-2486.2008.01557.x. DOI

McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI

Garnier E, Navas M-L. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron. Sustain. Dev. 2012;32:365–399. doi: 10.1007/s13593-011-0036-y. DOI

Enquist, B. J. et al. Chapter Nine - Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories. in Advances in Ecological Research (eds. Pawar, S., Woodward, G. & Dell, A. I.) vol. 52 249–318 (Academic Press, 2015).

Siefert A, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 2015;18:1406–1419. doi: 10.1111/ele.12508. PubMed DOI

Violle C, et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 2012;27:244–252. doi: 10.1016/j.tree.2011.11.014. PubMed DOI

Bolnick DI, et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 2011;26:183–192. doi: 10.1016/j.tree.2011.01.009. PubMed DOI PMC

Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI

Reich PB. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 2014;102:275–301. doi: 10.1111/1365-2745.12211. DOI

Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. doi: 10.1038/nature16489. PubMed DOI

Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI

Buytaert W, Cuesta-Camacho F, Tobón C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 2011;20:19–33. doi: 10.1111/j.1466-8238.2010.00585.x. DOI

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI

IPBES. The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. 10.5281/zenodo.3236253 (2018).

Christmann, T. & Oliveras, I. Nature of Alpine Ecosystems in Tropical Mountains of South America. in Encyclopedia of the World’s Biomes (eds. Goldstein, M. I. & DellaSala, D. A.) 282–291 (Elsevier, 2020).

Zimmermann M, et al. No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes. Ecosystems. 2010;13:62–74. doi: 10.1007/s10021-009-9300-2. DOI

Oliveras I, et al. Andean grasslands are as productive as tropical cloud forests. Environ. Res. Lett. 2014;9:115011. doi: 10.1088/1748-9326/9/11/115011. DOI

Miller GR, Burger RL. Our father the Cayman, our dinner the llama: Animal utilization at Chavín de Huántar, Peru. Am. Antiq. 1995;60:421–458. doi: 10.2307/282258. DOI

Rolando JL, et al. Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes. Agric. Ecosyst. Environ. 2017;236:221–233. doi: 10.1016/j.agee.2016.12.010. DOI

Urrutia, R. & Vuille, M. Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. 114 (2009).

Oliveras I, et al. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecol. Divers. 2014;7:329–340. doi: 10.1080/17550874.2013.816800. DOI

Young KR, León B. Tree-line changes along the Andes: implications of spatial patterns and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007;362:263–272. doi: 10.1098/rstb.2006.1986. PubMed DOI PMC

Kattge J, et al. TRY plant trait database - enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI

Plant Functional Traits Courses – Hands-on training in Plant Functional Traits ecology. https://plantfunctionaltraitscourses.w.uib.no/ (2023).

Patrick L, Thompson S, Halbritter AH. Adding value to a field‐based course with a science communication module on local perceptions of climate change. Bull. Ecol. Soc. Amer. 2020;101:e01680. doi: 10.1002/bes2.1680. DOI

Geange SR, et al. Next generation field courses: integrating Open Science and online learning. Ecol. Evol. 2021;11:3577–3587. doi: 10.1002/ece3.7009. PubMed DOI PMC

Vandvik V, et al. Plant traits and vegetation data from climate warming experiments along an 1100 m elevation gradient in Gongga Mountains, China. Sci. Data. 2020;7:189. doi: 10.1038/s41597-020-0529-0. PubMed DOI PMC

Vandvik, V. et al. Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard. Sci Data10, 578, 10.1038/s41597-023-02467-7 (2023). PubMed PMC

Halbritter AH, et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx) Methods Ecol. Evol. 2020;11:22–37. doi: 10.1111/2041-210X.13331. DOI

Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Alston JM, Rick JA. A beginner’s guide to conducting reproducible research. Bull. Ecol. Soc. Am. 2021;102:1–14. doi: 10.1002/bes2.1801. DOI

Hampton SE, et al. The Tao of open science for ecology. Ecosphere. 2015;6:art120. doi: 10.1890/ES14-00402.1. DOI

Vandvik V, et al. The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Sci. Data. 2022;9:451. doi: 10.1038/s41597-022-01559-0. PubMed DOI PMC

Girardin CAJ, et al. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecol. Divers. 2014;7:107–123. doi: 10.1080/17550874.2013.820222. DOI

Oliveras I, et al. Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecol. 2014;39:408–415. doi: 10.1111/aec.12098. DOI

Gibbon A, et al. Ecosystem carbon storage across the grassland–forest transition in the High Andes of Manu National Park, Peru. Ecosystems. 2010;13:1097–1111. doi: 10.1007/s10021-010-9376-8. DOI

Van der Eynden, M. Effects of fire history on species richness and carbon stocks in a Peruvian puna grassland, and development of allometric equations for biomass estimation of common puna species. (nmbu.brage.unit.no, 2011).

Román-Cuesta RM, et al. Implications of fires on carbon budgets in Andean cloud montane forest: The importance of peat soils and tree resprouting. For. Ecol. Manage. 2011;261:1987–1997. doi: 10.1016/j.foreco.2011.02.025. DOI

P. Sklenář, J. L. Luteyn, C. Ulloa Ulloa, P. M. Jørgensen & M. O. Dillon. Flora genérica de los Páramos. Guía Ilustrada de las Plantas Vasculares. vol. 92 (The New York Botanical Garden Press, 2005).

Tovar, O. Manual de identificación de pastos naturales de los andes del sur peruano (Gramíneas). http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=iicacr.xis&method=post&formato=2&cantidad=1&expresion=mfn=024204 (1988).

Sylvester SP, et al. Páramo Calamagrostis s.l. (Poaceae): An updated list and key to the species known or likely to occur in páramos of NW South America and southern Central America including two new species, one new variety and five new records for Colombia. PhytoKeys. 2019;122:29–78. doi: 10.3897/phytokeys.122.33032. PubMed DOI PMC

Maitner, B. & Boyle, B. Source code for: TNRS: Taxonomic Name Resolution Service. version 0.3.3 https://CRAN.R-project.org/package=TNRS (2023).

Boyle B, et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics. 2013;14:16. doi: 10.1186/1471-2105-14-16. PubMed DOI PMC

Missouri Botanical Garden. Tropicos. http://www.tropicos.org (2012).

TPL. The plant list version 1.1. http://www.theplantlist.org (2013).

USDA, NRCS. The PLANTS Database. http://plants.usda.gov (2015).

Pérez-Harguindeguy N, et al. New handbook for standardised measurement of plant functional traits worldwide. Austral. Bot. 2013 doi: 10.1071/BT12225. DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Katabuchi, M. LeafArea: Rapid Digital Image Analysis of Leaf Area. (2017).

Sloat LL, Henderson AN, Lamanna C, Enquist BJ. The Effect of the Foresummer Drought on Carbon Exchange in Subalpine Meadows. Ecosystems. 2015;18:533–545. doi: 10.1007/s10021-015-9845-1. DOI

Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change. (Academic Press, 2013).

Huxman TE, et al. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia. 2004;141:295–305. doi: 10.1007/s00442-003-1389-y. PubMed DOI

Huxman TE, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia. 2004;141:254–268. doi: 10.1007/s00442-004-1682-4. PubMed DOI

Arnone JA, Obrist D. A large daylight geodesic dome for quantification of whole-ecosystem CO2 and water vapour fluxes in arid shrublands. J. Arid Environ. 2003;55:629–643. doi: 10.1016/S0140-1963(02)00291-4. DOI

Street LE, Shaver GR, Williams M, Van Wijk MT. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2flux in arctic ecosystems? J. Ecol. 2007;95:139–150. doi: 10.1111/j.1365-2745.2006.01187.x. DOI

Jasoni RL, Smith SD, Arnone JA. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob. Chang. Biol. 2005;11:749–756. doi: 10.1111/j.1365-2486.2005.00948.x. DOI

Saleska SR, Harte J, Torn MS. The effect of experimental ecosystem warming on CO 2 fluxes in a montane meadow. Glob. Chang. Biol. 1999;5:125–141. doi: 10.1046/j.1365-2486.1999.00216.x. DOI

Wild J, et al. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI

Halbritter AH, 2023. PFTCourses, Elevational Gradient, Puna Project and Fire Experiment, Wayquecha, Peru. OSF. DOI

Halbritter AH, 2023. PFTC3, Puna project and PFTC5 - PFTCourses, Elevational Gradient, Puna Project and Fire Experiment, Wayquecha, Peru. Zenodo. DOI

CRediT - Contributor Roles Taxonomy. https://casrai.org/credit/ (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...