Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard

. 2023 Sep 04 ; 10 (1) : 578. [epub] 20230904

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37666874

Grantová podpora
2013/10074 Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)
HNP2015/10037 Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)

Odkazy

PubMed 37666874
PubMed Central PMC10477187
DOI 10.1038/s41597-023-02467-7
PII: 10.1038/s41597-023-02467-7
Knihovny.cz E-zdroje

The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.

Bjerknes Centre for Climate Research University of Bergen Bergen Norway

Department of Biological Sciences University of Bergen Bergen Norway

Department of Biology Colorado State University Fort Collins USA

Department of Biology University of Copenhagen Copenhagen Denmark

Department of Botany Charles University Prague Czech Republic

Department of Botany University of British Columbia Vancouver Canada

Department of Ecology and Evolutionary Biology University of Arizona Tucson USA

Department of Environmental Science Policy and Management University of California Berkeley Berkeley USA

Department of Ethnobotany University of Alaska Fairbanks Canada

Department of Health and Environmental Sciences Xi'an Jiaotong Liverpool University Suzhou China

Department of Physical Geography Stockholm University Stockholm Sweden

Department of Plant Sciences University of Cambridge Cambridge United Kingdom

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Geography Research Unit University of Oulu Oulu Finland

Institute of Arctic and Alpine Research University of Colorado Boulder Boulder USA

Life and Environmental Sciences University of Iceland Reykjavík Iceland

NORCE Norwegian Research Centre AS Bjerknes Centre for Climate Research Bergen Norway

School of Geography and the Environment University of Oxford Oxford UK

School of Geography Development and Environment University of Arizona Tucson USA

Section of Botany Carnegie Museum of Natural History Pittsburgh USA

Universidad Nacional de San Antonio Abad del Cusco Cusco Perú

Zobrazit více v PubMed

Rantanen M, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022;3:1–10.

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Masson-Delmotte, V., et al (Cambridge University Press, 2021).

Paleczny M, Hammill E, Karpouzi V, Pauly D. Population Trend of the World’s Monitored Seabirds, 1950–2010. PLoS One. 2015;10:e0129342. PubMed PMC

Dias MP, et al. Threats to seabirds: A global assessment. Biol. Conserv. 2019;237:525–537.

Jónsdóttir IS, et al. Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming. Ecol. Monogr. 2022;e1555:1–21.

Myers-Smith IH, et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020;10:106–117.

Elmendorf SC, et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 2012;15:164–175. PubMed

Urban MC, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353:aad8466-1–aad8466-9. PubMed

Mekonnen ZA, et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 2021;16:05300.

Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. PubMed

Bjorkman AD, et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2019;49(3):678–692. doi: 10.1007/s13280-019-01161-6. PubMed DOI PMC

Treharne R, Bjerke JW, Tømmervik H, Stendardi L, Phoenix GK. Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Chang. Biol. 2019;25:489–503. PubMed PMC

Grant ML, Bond AL, Lavers JL. The influence of seabirds on their breeding, roosting and nesting grounds: A systematic review and meta-analysis. J. Anim. Ecol. 2022;91:1266–1289. PubMed PMC

Caut S, et al. Seabird modulations of isotopic nitrogen on islands. PLoS One. 2012;7:e39125. PubMed PMC

Benkwitt CE, Carr P, Wilson SK, Graham NAJ. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. Biol. Sci. 2022;289:20220195. PubMed PMC

Lorrain A, et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 2017;7:3721. PubMed PMC

Earl JE, Zollner PA. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 2017;86:987–997. PubMed

De La Peña-Lastra S. Seabird droppings: Effects on a global and local level. Sci. Total Environ. 2021;754:142148. PubMed

Zwolicki A, Zmudczyńska-Skarbek KM, Iliszko L, Stempniewicz L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 2013;36:363–372.

García Criado M, et al. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat. Commun. 2023;14:3837. PubMed PMC

Kemppinen J, et al. Consistent trait-environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021;5:458–467. PubMed

Hamann E, Kesselring H, Stöcklin J. Plant responses to simulated warming and drought: a comparative study of functional plasticity between congeneric mid and high elevation species. J Plant Ecol. 2018;11:364–374.

Henn JJ, et al. Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. Front. Plant Sci. 2018;9:1548. PubMed PMC

Siefert A, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 2015;18:1406–1419. PubMed

Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. PubMed

Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 2002;16:545–556.

Chacón-Labella J, et al. How to improve scaling from traits to ecosystem processes. Trends Ecol. Evol. 2023;38(3):228–237. PubMed

Thomson ER, et al. Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 2021;16:055006.

Schweiger AK, et al. How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol. 2017;8:86–95.

Cavender-Bares J, et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat Ecol Evol. 2022;6:506–519. PubMed

Dietze MC, Lebauer DS, Kooper R. On improving the communication between models and data. Plant Cell Environ. 2013;36:1575–1585. PubMed

Kattge J, et al. TRY plant trait database - enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed

Patrick L, Thompson S, Halbritter AH. Adding value to a field‐based course with a science communication module on local perceptions of climate change. Bulletin of the Ecological Society of America. 2020;101:e01680.

Geange SR, et al. Next generation field courses: integrating Open Science and online learning. Ecol. Evol. 2020;11:3577–3587. PubMed PMC

Vandvik V, et al. Plant traits and vegetation data from climate warming experiments along an 1100 m elevation gradient in Gongga Mountains, China. Sci Data. 2020;7:189. PubMed PMC

Halbritter AH, 2023. PFTCourses, Elevational Gradient, Puna Project and Fire Experiment, Wayquecha, Peru. Final Submission. Zenodo. DOI

Halbritter AH, et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx) Methods Ecol. Evol. 2020;11:22–37.

Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. PubMed PMC

Alston JM, Rick JA. A beginner’s guide to conducting reproducible research. Bull. Ecol. Soc. Am. 2021;102:1–14.

Hampton SE, et al. The Tao of open science for ecology. Ecosphere. 2015;6:art120.

Vandvik V, et al. The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Sci Data. 2022;9:451. PubMed PMC

Jones, A. et al. Soil atlas of the northern Circumpolar Region. (European Commission, 2010).

Jónsdóttir, I. S. International Tundra Experiment ITEX - Expert Network Monitoring Plan. Supporting publication to the CAFF Circumpolar Biodiversity Monitoring Program Framework Document. 8 (2004).

Henry GHR, Molau U. Tundra plants and climate change: the International Tundra Experiment (ITEX) Glob. Chang. Biol. 1997;3:1–9.

Dallmann, W. K. Geoscience Atlas of Svalbard. (2015).

Pirk N, et al. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates. Biogeosciences. 2017;14:3157–3169.

Cooper EJ, Little CJ, Pilsbacher AK, Mörsdorf MA. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 2019;30:857–867.

Maitner, B. & Boyle, B. TNRS: Taxonomic Name Resolution Service. Preprint at https://CRAN.R-project.org/package=TNRS (2021).

Boyle B, et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics. 2013;14:16. PubMed PMC

Missouri Botanical Garden. Tropicos. Preprint at http://www.tropicos.org (2012).

TPL. The plant list version 1.1. Preprint at http://www.theplantlist.org, (2013).

USDA, NRCS. The PLANTS Database. Preprint at http://plants.usda.gov (2015).

Hallingbäck, T., Lönnell, N., Weibull, H. & Hedenäs, L. Bladmossor: Sköldmossor - blåmossor: Bryophyta: Buxbaumia – Leucobryum. (SLU Artdatabanken, 2005).

Molau, U. & Mølgaard, P. International tundra experiment (ITEX) manual. Danish Polar Center, Copenhagen, Denmark (1996).

Pérez-Harguindeguy N, et al. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 2013;64,:715–716. doi: 10.1071/BT12225. DOI

Roos RE, et al. Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 2019;33:2430–2446.

van Zuijlen K, et al. Community-level functional traits of alpine vascular plants, bryophytes, and lichens after long-term experimental warming. Arct. Sci. 2022;8:843–857.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Katabuchi, M. LeafArea: Rapid Digital Image Analysis of Leaf Area. (2017).

Matejovic I. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Commun. Soil Sci. Plant Anal. 1997;28:1499–1511.

Jasoni, R. L., Smith, S. D. & Arnone, J. A. III Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob. Chang. Biol. (2005).

Street, L. E., Shaver, G. R. & Williams, M. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of (2007).

Huxman TE, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia. 2004;141:254–268. PubMed

Potts D. L. et al. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New. Phyt. 70, 849–860. PubMed

Bjerke JW, et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total Environ. 2017;599-600:1965–1976. PubMed

Halbritter AH, 2023. PFTCourses, Elevational Gradient, Bird Cliff and ITEX Experiment, Longyearbyen, Svalbard. OSF. DOI

Halbritter AH, 2023. Plant-Functional-Trait-Course/PFTC4_svalbard: Final Submission v0.3. Zenodo. DOI

CASRAI. CRediT - Contributor Roles Taxonomy. Retrieved from https://casrai.org/credit/ (2019).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

. 2024 Feb 21 ; 11 (1) : 225. [epub] 20240221

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...