Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
2013/10074
Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)
HNP2015/10037
Senter for Internasjonalisering av Utdanning (Norwegian Centre for International Cooperation in Education)
PubMed
37666874
PubMed Central
PMC10477187
DOI
10.1038/s41597-023-02467-7
PII: 10.1038/s41597-023-02467-7
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- podnebí * MeSH
- ptáci MeSH
- znalosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Svalbard MeSH
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Bjerknes Centre for Climate Research University of Bergen Bergen Norway
Department of Biological Sciences University of Bergen Bergen Norway
Department of Biology Colorado State University Fort Collins USA
Department of Biology University of Copenhagen Copenhagen Denmark
Department of Botany Charles University Prague Czech Republic
Department of Botany University of British Columbia Vancouver Canada
Department of Ecology and Evolutionary Biology University of Arizona Tucson USA
Department of Ethnobotany University of Alaska Fairbanks Canada
Department of Health and Environmental Sciences Xi'an Jiaotong Liverpool University Suzhou China
Department of Physical Geography Stockholm University Stockholm Sweden
Department of Plant Sciences University of Cambridge Cambridge United Kingdom
Geography Research Unit University of Oulu Oulu Finland
Institute of Arctic and Alpine Research University of Colorado Boulder Boulder USA
Life and Environmental Sciences University of Iceland Reykjavík Iceland
NORCE Norwegian Research Centre AS Bjerknes Centre for Climate Research Bergen Norway
School of Geography and the Environment University of Oxford Oxford UK
School of Geography Development and Environment University of Arizona Tucson USA
Section of Botany Carnegie Museum of Natural History Pittsburgh USA
Universidad Nacional de San Antonio Abad del Cusco Cusco Perú
Zobrazit více v PubMed
Rantanen M, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment. 2022;3:1–10.
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Masson-Delmotte, V., et al (Cambridge University Press, 2021).
Paleczny M, Hammill E, Karpouzi V, Pauly D. Population Trend of the World’s Monitored Seabirds, 1950–2010. PLoS One. 2015;10:e0129342. PubMed PMC
Dias MP, et al. Threats to seabirds: A global assessment. Biol. Conserv. 2019;237:525–537.
Jónsdóttir IS, et al. Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming. Ecol. Monogr. 2022;e1555:1–21.
Myers-Smith IH, et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020;10:106–117.
Elmendorf SC, et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 2012;15:164–175. PubMed
Urban MC, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353:aad8466-1–aad8466-9. PubMed
Mekonnen ZA, et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 2021;16:05300.
Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. PubMed
Bjorkman AD, et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio. 2019;49(3):678–692. doi: 10.1007/s13280-019-01161-6. PubMed DOI PMC
Treharne R, Bjerke JW, Tømmervik H, Stendardi L, Phoenix GK. Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Chang. Biol. 2019;25:489–503. PubMed PMC
Grant ML, Bond AL, Lavers JL. The influence of seabirds on their breeding, roosting and nesting grounds: A systematic review and meta-analysis. J. Anim. Ecol. 2022;91:1266–1289. PubMed PMC
Caut S, et al. Seabird modulations of isotopic nitrogen on islands. PLoS One. 2012;7:e39125. PubMed PMC
Benkwitt CE, Carr P, Wilson SK, Graham NAJ. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. Biol. Sci. 2022;289:20220195. PubMed PMC
Lorrain A, et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 2017;7:3721. PubMed PMC
Earl JE, Zollner PA. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 2017;86:987–997. PubMed
De La Peña-Lastra S. Seabird droppings: Effects on a global and local level. Sci. Total Environ. 2021;754:142148. PubMed
Zwolicki A, Zmudczyńska-Skarbek KM, Iliszko L, Stempniewicz L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 2013;36:363–372.
García Criado M, et al. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat. Commun. 2023;14:3837. PubMed PMC
Kemppinen J, et al. Consistent trait-environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021;5:458–467. PubMed
Hamann E, Kesselring H, Stöcklin J. Plant responses to simulated warming and drought: a comparative study of functional plasticity between congeneric mid and high elevation species. J Plant Ecol. 2018;11:364–374.
Henn JJ, et al. Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. Front. Plant Sci. 2018;9:1548. PubMed PMC
Siefert A, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 2015;18:1406–1419. PubMed
Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. PubMed
Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 2002;16:545–556.
Chacón-Labella J, et al. How to improve scaling from traits to ecosystem processes. Trends Ecol. Evol. 2023;38(3):228–237. PubMed
Thomson ER, et al. Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 2021;16:055006.
Schweiger AK, et al. How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol. 2017;8:86–95.
Cavender-Bares J, et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat Ecol Evol. 2022;6:506–519. PubMed
Dietze MC, Lebauer DS, Kooper R. On improving the communication between models and data. Plant Cell Environ. 2013;36:1575–1585. PubMed
Kattge J, et al. TRY plant trait database - enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed
Patrick L, Thompson S, Halbritter AH. Adding value to a field‐based course with a science communication module on local perceptions of climate change. Bulletin of the Ecological Society of America. 2020;101:e01680.
Geange SR, et al. Next generation field courses: integrating Open Science and online learning. Ecol. Evol. 2020;11:3577–3587. PubMed PMC
Vandvik V, et al. Plant traits and vegetation data from climate warming experiments along an 1100 m elevation gradient in Gongga Mountains, China. Sci Data. 2020;7:189. PubMed PMC
Halbritter AH, 2023. PFTCourses, Elevational Gradient, Puna Project and Fire Experiment, Wayquecha, Peru. Final Submission. Zenodo. DOI
Halbritter AH, et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx) Methods Ecol. Evol. 2020;11:22–37.
Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. PubMed PMC
Alston JM, Rick JA. A beginner’s guide to conducting reproducible research. Bull. Ecol. Soc. Am. 2021;102:1–14.
Hampton SE, et al. The Tao of open science for ecology. Ecosphere. 2015;6:art120.
Vandvik V, et al. The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Sci Data. 2022;9:451. PubMed PMC
Jones, A. et al. Soil atlas of the northern Circumpolar Region. (European Commission, 2010).
Jónsdóttir, I. S. International Tundra Experiment ITEX - Expert Network Monitoring Plan. Supporting publication to the CAFF Circumpolar Biodiversity Monitoring Program Framework Document. 8 (2004).
Henry GHR, Molau U. Tundra plants and climate change: the International Tundra Experiment (ITEX) Glob. Chang. Biol. 1997;3:1–9.
Dallmann, W. K. Geoscience Atlas of Svalbard. (2015).
Pirk N, et al. Spatial variability of CO2 uptake in polygonal tundra: assessing low-frequency disturbances in eddy covariance flux estimates. Biogeosciences. 2017;14:3157–3169.
Cooper EJ, Little CJ, Pilsbacher AK, Mörsdorf MA. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 2019;30:857–867.
Maitner, B. & Boyle, B. TNRS: Taxonomic Name Resolution Service. Preprint at https://CRAN.R-project.org/package=TNRS (2021).
Boyle B, et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics. 2013;14:16. PubMed PMC
Missouri Botanical Garden. Tropicos. Preprint at http://www.tropicos.org (2012).
TPL. The plant list version 1.1. Preprint at http://www.theplantlist.org, (2013).
USDA, NRCS. The PLANTS Database. Preprint at http://plants.usda.gov (2015).
Hallingbäck, T., Lönnell, N., Weibull, H. & Hedenäs, L. Bladmossor: Sköldmossor - blåmossor: Bryophyta: Buxbaumia – Leucobryum. (SLU Artdatabanken, 2005).
Molau, U. & Mølgaard, P. International tundra experiment (ITEX) manual. Danish Polar Center, Copenhagen, Denmark (1996).
Pérez-Harguindeguy N, et al. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 2013;64,:715–716. doi: 10.1071/BT12225. DOI
Roos RE, et al. Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 2019;33:2430–2446.
van Zuijlen K, et al. Community-level functional traits of alpine vascular plants, bryophytes, and lichens after long-term experimental warming. Arct. Sci. 2022;8:843–857.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Katabuchi, M. LeafArea: Rapid Digital Image Analysis of Leaf Area. (2017).
Matejovic I. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Commun. Soil Sci. Plant Anal. 1997;28:1499–1511.
Jasoni, R. L., Smith, S. D. & Arnone, J. A. III Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob. Chang. Biol. (2005).
Street, L. E., Shaver, G. R. & Williams, M. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of (2007).
Huxman TE, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia. 2004;141:254–268. PubMed
Potts D. L. et al. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New. Phyt. 70, 849–860. PubMed
Bjerke JW, et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total Environ. 2017;599-600:1965–1976. PubMed
Halbritter AH, 2023. PFTCourses, Elevational Gradient, Bird Cliff and ITEX Experiment, Longyearbyen, Svalbard. OSF. DOI
Halbritter AH, 2023. Plant-Functional-Trait-Course/PFTC4_svalbard: Final Submission v0.3. Zenodo. DOI
CASRAI. CRediT - Contributor Roles Taxonomy. Retrieved from https://casrai.org/credit/ (2019).