Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells

. 2024 Aug 30 ; 81 (1) : 376. [epub] 20240830

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39212707

Grantová podpora
U.S. Food and Drug Administration U.S. Food and Drug Administration
U.S. Food and Drug Administration U.S. Food and Drug Administration

Odkazy

PubMed 39212707
PubMed Central PMC11364738
DOI 10.1007/s00018-024-05342-9
PII: 10.1007/s00018-024-05342-9
Knihovny.cz E-zdroje

In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.

Zobrazit více v PubMed

Abbas A, Rajabally YA (2019) Complications of Immunoglobulin Therapy and implications for treatment of inflammatory neuropathy: a review. Curr Drug Saf 14(1):3–13 10.2174/1574886313666181017121139 PubMed DOI

Orbach H et al (2005) Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 29(3):173–184 10.1385/CRIAI:29:3:173 PubMed DOI

Funk MB et al (2013) Thromboembolic events associated with immunoglobulin treatment. Vox Sang 105(1):54–64 10.1111/vox.12025 PubMed DOI

Baxley A, Akhtari M (2011) Hematologic toxicities associated with intravenous immunoglobulin therapy. Int Immunopharmacol 11(11):1663–1667 10.1016/j.intimp.2011.07.024 PubMed DOI

Benadiba J et al (2015) Intravenous immunoglobulin-associated thrombosis: is it such a rare event? Report of a pediatric case and of the Quebec Hemovigilance System. Transfusion 55(3):571–575 10.1111/trf.12897 PubMed DOI

Bilal J et al (2016) Intravenous Immunoglobulin-Induced Pulmonary Embolism: it is time to Act! Am J Ther 23(4):e1074–e1077 10.1097/MJT.0000000000000288 PubMed DOI

Woodruff RK et al (1986) Fatal thrombotic events during treatment of autoimmune thrombocytopenia with intravenous immunoglobulin in elderly patients. Lancet 2(8500):217–218 10.1016/S0140-6736(86)92511-0 PubMed DOI

Polumuri SK et al (2018) Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep 8(1):11477 10.1038/s41598-018-29850-4 PubMed DOI PMC

Narhi LO et al (2012) Classification of protein aggregates. J Pharm Sci 101(2):493–498 10.1002/jps.22790 PubMed DOI

Chi EY et al (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20(9):1325–1336 10.1023/A:1025771421906 PubMed DOI

Roberts CJ (2007) Non-native protein aggregation kinetics. Biotechnol Bioeng 98(5):927–938 10.1002/bit.21627 PubMed DOI

Moussa EM et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105(2):417–430 10.1016/j.xphs.2015.11.002 PubMed DOI

Telikepalli SN et al (2022) An interlaboratory study to identify potential visible protein-like particle standards. AAPS PharmSciTech 24(1):18 10.1208/s12249-022-02457-9 PubMed DOI

Ripple DC, Montgomery CB, Hu Z (2015) An interlaboratory comparison of sizing and counting of subvisible particles mimicking protein aggregates. J Pharm Sci 104(2):666–677 10.1002/jps.24287 PubMed DOI

Chisholm CF et al (2020) Subvisible particles in IVIg formulations activate complement in human serum. J Pharm Sci 109(1):558–565 10.1016/j.xphs.2019.10.041 PubMed DOI PMC

Carpenter JF et al (2009) Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci 98(4):1201–1205 10.1002/jps.21530 PubMed DOI PMC

Shomali M et al (2014) Antibody responses in mice to particles formed from adsorption of a murine monoclonal antibody onto glass microparticles. J Pharm Sci 103(1):78–89 10.1002/jps.23772 PubMed DOI

Tyagi AK et al (2009) IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci 98(1):94–104 10.1002/jps.21419 PubMed DOI

Wen ZQ et al (2012) Nondestructive detection of glass vial inner surface morphology with differential interference contrast microscopy. J Pharm Sci 101(4):1378–1384 10.1002/jps.23048 PubMed DOI

Liu L, Randolph TW, Carpenter JF (2012) Particles shed from syringe filters and their effects on agitation-induced protein aggregation. J Pharm Sci 101(8):2952–2959 10.1002/jps.23225 PubMed DOI

Thirumangalathu R et al (2009) Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci 98(9):3167–3181 10.1002/jps.21719 PubMed DOI PMC

Ahmadi M et al (2015) Small amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeutics. Pharm Res 32(4):1383–1394 10.1007/s11095-014-1541-x PubMed DOI

Singh SK (2011) Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci 100(2):354–387 10.1002/jps.22276 PubMed DOI

Carpenter J et al (2010) Meeting report on protein particles and immunogenicity of therapeutic proteins: filling in the gaps in risk evaluation and mitigation. Biologicals 38(5):602–611 10.1016/j.biologicals.2010.07.002 PubMed DOI

Kotarek J et al (2016) Subvisible Particle Content, Formulation, and dose of an erythropoietin peptide Mimetic Product are Associated with severe adverse postmarketing events. J Pharm Sci 105(3):1023–1027 10.1016/S0022-3549(15)00180-X PubMed DOI

Salazar-Fontana LI et al (2017) Approaches to mitigate the unwanted immunogenicity of therapeutic proteins during Drug Development. AAPS J 19(2):377–385 10.1208/s12248-016-0030-z PubMed DOI

Orecna M et al (2014) Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine 10(5):939–948 10.1016/j.nano.2014.02.001 PubMed DOI

Patel M et al (2019) Cell membrane disintegration and extracellular vesicle release in a model of different size and charge PAMAM dendrimers effects on cultured endothelial cells. Nanotoxicology 13(5):664–681 10.1080/17435390.2019.1570373 PubMed DOI

De Paoli SH et al (2018) Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell Mol Life Sci 75(20):3781–3801 10.1007/s00018-018-2771-6 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675 10.1038/nmeth.2089 PubMed DOI PMC

Joubert MK et al (2012) Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 287(30):25266–25279 10.1074/jbc.M111.330902 PubMed DOI PMC

Joubert MK et al (2011) Classification and characterization of therapeutic antibody aggregates. J Biol Chem 286(28):25118–25133 10.1074/jbc.M110.160457 PubMed DOI PMC

Moussa EM et al (2016) Physical characterization and Innate Immunogenicity of Aggregated Intravenous Immunoglobulin (IGIV) in an in vitro cell-based model. Pharm Res 33(7):1736–1751 10.1007/s11095-016-1914-4 PubMed DOI

Rombach-Riegraf V et al (2014) Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS ONE 9(1):e86322 10.1371/journal.pone.0086322 PubMed DOI PMC

Telikepalli S et al (2015) Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting. J Pharm Sci 104(5):1575–1591 10.1002/jps.24379 PubMed DOI PMC

Akhter F et al (2022) A comprehensive review of synthesis, applications and future prospects for silica nanoparticles (SNPs). Silicon 14(14):8295–831010.1007/s12633-021-01611-5 DOI

Duan J et al (2013) Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 34(23):5853–5862 10.1016/j.biomaterials.2013.04.032 PubMed DOI

Kim JY et al (2017) Safety of nonporous silica nanoparticles in human corneal endothelial cells. Sci Rep 7(1):14566 10.1038/s41598-017-15247-2 PubMed DOI PMC

Napierska D et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5(7):846–853 10.1002/smll.200800461 PubMed DOI

Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15(10):599–614 10.1038/nri3901 PubMed DOI PMC

Deretic V, Jiang S, Dupont N (2012) Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 22(8):397–406 10.1016/j.tcb.2012.04.008 PubMed DOI PMC

Kaeser-Pebernard S et al (2022) mTORC1 controls golgi architecture and vesicle secretion by phosphorylation of SCYL1. Nat Commun 13(1):4685 10.1038/s41467-022-32487-7 PubMed DOI PMC

Leidal AM et al (2020) The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 22(2):187–199 10.1038/s41556-019-0450-y PubMed DOI PMC

Pan LF, Kreisle RA, Shi YD (1998) Detection of Fcgamma receptors on human endothelial cells stimulated with cytokines tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). Clin Exp Immunol 112(3):533–538 10.1046/j.1365-2249.1998.00597.x PubMed DOI PMC

Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623 10.1146/annurev.immunol.17.1.593 PubMed DOI

Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234 10.1146/annurev.immunol.15.1.203 PubMed DOI

Lovdal T et al (2000) Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver. J Cell Sci 113(Pt 18):3255–3266 10.1242/jcs.113.18.3255 PubMed DOI

Turman JM et al (2021) Accelerated clearance and degradation of cell-free HIV by Neutralizing Antibodies Occurs via FcgammaRIIb on Liver Sinusoidal endothelial cells by Endocytosis. J Immunol 206(6):1284–1296 10.4049/jimmunol.2000772 PubMed DOI PMC

Johansson AG et al (1996) Liver cell uptake and degradation of soluble immunoglobulin G immune complexes in vivo and in vitro in rats. Hepatology 24(1):169–175 PubMed

Amigorena S et al (1992) Cytoplasmic domain heterogeneity and functions of IgG fc receptors in B lymphocytes. Science 256(5065):1808–1812 10.1126/science.1535455 PubMed DOI

Miettinen HM, Rose JK, Mellman I (1989) Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 58(2):317–327 10.1016/0092-8674(89)90846-5 PubMed DOI

Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24(1):19–28 10.1016/j.immuni.2005.11.010 PubMed DOI

Van Den Herik-Oudijk IE et al (1994) Functional analysis of human fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol 152(2):574–585 10.4049/jimmunol.152.2.574 PubMed DOI

Ben Mkaddem S, Benhamou M, Monteiro RC (2019) Understanding fc receptor involvement in Inflammatory diseases: from mechanisms to New Therapeutic Tools. Front Immunol 10:811 10.3389/fimmu.2019.00811 PubMed DOI PMC

Ben Mkaddem S et al (2014) Shifting FcgammaRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. J Clin Invest 124(9):3945–3959 10.1172/JCI74572 PubMed DOI PMC

Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv Immunol 96:179–204 10.1016/S0065-2776(07)96005-8 PubMed DOI

Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343 10.1038/nri2762 PubMed DOI PMC

Ganesan LP et al (2012) FcgammaRIIb on liver sinusoidal endothelium clears small immune complexes. J Immunol 189(10):4981–4988 10.4049/jimmunol.1202017 PubMed DOI PMC

Kamimoto M, Rung-Ruangkijkrai T, Iwanaga T (2005) Uptake ability of hepatic sinusoidal endothelial cells and enhancement by lipopolysaccharide. Biomed Res 26(3):99–107 10.2220/biomedres.26.99 PubMed DOI

Anania JC et al (2019) The human FcgammaRII (CD32) family of leukocyte FcR in Health and Disease. Front Immunol 10:464 10.3389/fimmu.2019.00464 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...