Anatomy of the Achilles tendon-A pictorial review
Language English Country Germany Media print-electronic
Document type Journal Article, Review
PubMed
39212710
DOI
10.1007/s00132-024-04555-x
PII: 10.1007/s00132-024-04555-x
Knihovny.cz E-resources
- Keywords
- Blood supply, Calcaneal tuberosity, Retrocalcaneal bursa, Tendo calcaneus, Triceps surae muscle,
- MeSH
- Achilles Tendon * anatomy & histology MeSH
- Models, Anatomic MeSH
- Muscle, Skeletal anatomy & histology innervation MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The Achilles tendon (AT) is the strongest tendon of the human body. The knowledge of AT anatomy is a basic prerequisite for the successful treatment of acute and chronic lesions. The structure of the AT results from a complicated fusion of three parts: the tendons of the medial and lateral gastrocnemius and the soleus muscles. From proximal to distal, the tendon fibers twist in a long spiral into a roughly 90° internal rotation. The tendon is narrowest approximately 5-7 cm above its calcaneal insertion and from there it expands again. The topography of the footprints of the individual AT components reflects the tendon origins. The anterior (deep) AT fibers insert into the middle third of the posterior aspect of the calcaneal tuberosity, the posterior (superficial) fibers pass over the calcaneal tuberosity and fuse with the plantar aponeurosis. A deep calcaneal bursa is interposed between the calcaneal tuberosity and the AT anterior surface. The AT has no synovial sheath but is covered along its entire length with a sliding connective tissue, the paratenon which is, however, absent on its anterior surface. The AT is supplied by the posterior tibial artery (PTA) and the peroneal artery (PA). Motor innervation of the triceps surae muscle is provided by fibers of the tibial nerve which also gives off sensitive fibers for the AT. Sensitive innervation is also provided via the sural nerve. The sural nerve crosses the AT approximately 11 cm proximal to the calcaneal tuberosity. The forces acting on the AT during exercise may be up to 12 times the body weight. Physiological stretching of AT collagen fibers ranges between 2% and 4% of its length. Stretching of the tendon over 4% results in microscopic failure and stretching beyond 8% in macroscopic failure.
Die Achillessehne (AT) ist die stärkste Sehne des menschlichen Körpers. Die Kenntnis der Anatomie der Achillessehne ist eine Grundvoraussetzung für die erfolgreiche Behandlung von akuten und chronischen Läsionen. Die Struktur dieser Sehne ergibt sich aus einer komplizierten Verschmelzung dreier Teile: der Sehnen des medialen und lateralen M. gastrocnemius und M. soleus. Von proximal nach distal verdrehen sich die Sehnenfasern in einer langen Spirale zu einer Innenrotation von etwa 90°. Die Sehne ist etwa 5‑7 cm oberhalb ihres Ansatzes am Kalkaneus am schmalsten und dehnt sich von dort aus wieder aus. Die Topographie der Footprints der einzelnen AT-Komponenten spiegelt die Sehnenursprünge wider. Die vorderen (tiefen) AT-Fasern setzen im mittleren Drittel der hinteren Seite des Tuber calcanei an, die hinteren (oberflächlichen) Fasern ziehen über den Tuber calcanei und verschmelzen mit der Plantaraponeurose. Zwischen dem Tuberculum calcanei und der vorderen Oberfläche der AT befindet sich ein tiefer Schleimbeutel (Bursa calcanei). Die AT hat keine Synovialscheide, sondern ist auf seiner gesamten Länge mit einem gleitenden Bindegewebe, dem Paratenon, bedeckt, das jedoch an seiner vorderen Oberfläche fehlt. Die AT wird von der A. tibialis posterior (PTA) und der A. peronaea (PA) versorgt. Die motorische Innervation des M. triceps surae erfolgt durch Fasern des N. tibialis, der auch sensible Fasern für die AT abgibt. Die sensible Innervation erfolgt auch über den N. suralis. Dieser suralis kreuzt die AT etwa 11 cm proximal des Tuberculum calcanei. Die Kräfte, die bei sportlicher Betätigung auf die AT einwirken, können bis zum 12-fachen des Körpergewichts betragen. Die physiologische Dehnung der Kollagenfasern der AT liegt zwischen 2 und 4% ihrer Länge. Eine Dehnung der Sehne von mehr als 4% führt zu mikroskopischem Versagen und eine Dehnung von mehr als 8% zu makroskopischem Versagen.
See more in PubMed
Apaydin N, Bozkurt M, Loukas M, Vefali H, Tubbs RS, Esmer AF (2009) Relationships of the sural nerve with the calcaneal tendon: an anatomical study with surgical and clinical implications. Surg Radiol Anat 31:775–780. https://doi.org/10.1007/s00276-009-0520-0 PubMed DOI
Aström M, Westlin N (1994) Blood flow in the human Achilles tendon assessed by laser doppler flowmetry. J Orthop Res 12:246–252 PubMed DOI
Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208:471–490. https://doi.org/10.1111/j.1469-7580.2006.00540.x PubMed DOI PMC
Bleakney RR, Tallon C, Wong JK, Lim KP, Maffulli N (2002) Long-term ultrasonographic features of the Achilles tendon after rupture. Clin J Sport Med 12:273–278. https://doi.org/10.1097/00042752-200209000-00003 PubMed DOI
Chen TM, Rozen WM, Pan WR, Ashton MW, Richardson MD, Taylor GI (2009) The arterial anatomy of the Achilles tendon: anatomical study and clinical implications. Clin Anat 22:377–385. https://doi.org/10.1002/ca.20758 PubMed DOI
Citak M, Knobloch K, Albrecht K, Krettek C, Hufner T (2007) Anatomy of the sural nerve in a computer-assisted model: implications for surgical minimal-invasive Achilles tendon repair. Br J Sports Med 41:456–458 PubMed DOI PMC
Doral MN, Alam M, Bozkurt M, Turhan E, Atay OA, Dönmez G, Maffulli N (2010) Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc 18:638–643. https://doi.org/10.1007/s00167-010-1083-7 PubMed DOI
Edama M, Kubo M, Onishi H, Takabayashi T, Yokoyama E, Inai T, Watanabe H, Nashimoto S, Kageyama I (2016) Structure of the achilles tendon at the insertion on the calcaneal tuberosity. J Anat 229:610–614. https://doi.org/10.1111/joa.12514 PubMed DOI PMC
Eliasson P, Andersson T, Hammerman M, Aspenberg P (2013) Primary gene response to mechanical loading in healing rat Achilles tendons. J Appl Physiol 114:1519–1526. https://doi.org/10.1152/japplphysiol.01500.2012 PubMed DOI
Federative Committee on Anatomical Terminology (FCAT) (1998) Terminologia Anatomica. International anatomical terminology. Thieme, Stuttgart
Hastad K, Larson L, Lindholm A (1958) Clearance of radiosodium after local deposit in the Achilles tendon. Acta Chir Scand 116:251–255
Heister L (1717) Compendium anatomicum. In: Kohles JG (ed) Altdorf, p 22
Heister L (1723) Chirurgie. J. Hoffmann, Nürnberg, pp 704–753
Järvinen TA, Järvinen TL, Kannus P, Józsa L, Järvinen M (2004) Collagen fibres of the spontaneously ruptured human tendons display decreased thickness and crimp angle. J Orthop Res 22:1303–1309. https://doi.org/10.1016/j.orthres.2004.04.003 PubMed DOI
Kager H (1939) Zur Klinik und Diagnostik des Achillessehnenrisses. Chirurg 11:691–695
Lagergren C, Lindholm A (1959) Vascular distribution in the Achilles tendon; an angiographic and microangiographic study. Acta Chir Scand 116:491–495 PubMed
Langberg H, Bűlow J, Kjaer M (1998) Blood flow in the peritendinous space of the human Achilles tendon during exercise. Acta Physiol Scand 163:149–153 PubMed DOI
Musil V, Stingl J, Bacova T, Baca V, Kachlik D (2011) Achilles tendon: the 305th anniversary of the French priority on the introduction of the famous anatomical eponym. Surg Radiol Anat 33:421–427. https://doi.org/10.1007/s00276-010-0740-3 PubMed DOI
O’Brien M (2005) The anatomy of the Achilles tendon. Foot Ankle Clin 10:225–238 PubMed DOI
Ricci V, Mezian K, Chang KV, Tamborrini G, Jačisko J, Naňka O, Özçakar L (2024) Ultrasound-guided injection of the Achilles paratenon: a cadaveric investigation. Foot Ankle Surg. https://doi.org/10.1016/j.fas.2024.01.005 (S1268–7731(24) 00024-9) PubMed DOI
Rossetti L, Kuntz L, Kunold E et al (2017) The microstructure and micromechanics of the tendon–bone insertion. Nature Mater 16:664–670. https://doi.org/10.1038/nmat4863 DOI
Shaw HM, Vázquez OT, McGonagle D, Bydder G, Santer RM, Benjamin M (2008) Development of the human Achilles tendon enthesis organ. J Anat 213:718–724. https://doi.org/10.1111/j.1469-7580.2008.00997.x PubMed DOI PMC
Stingl J (1989) Normální anatomie Achillovy šlachy. Sb Lek 91:73–82 (Normal anatomy of the Achilles tendon) PubMed
Tan SC, Chan O (2008) Achilles and patellar tendinopathy: current understanding of pathophysiology and management. Disabil Rehabil 30:1608–1615. https://doi.org/10.1080/09638280701792268 PubMed DOI
Taylor GI, Pan WR (1998) Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg 102:599–616 PubMed DOI
Testut L, Jacob O (1909) Traite d’anatomie topographique avec applications médico-chirurgicales, 2nd edn. vol 2. Octave Doin et fils, Paris
Vesalius A (1543) De humani corporis fabrica libri septem. Joannis Oporini, Basel
Wang JH (2006) Mechanobiology of tendon. J Biomech 39:1563–1582 PubMed DOI
Webb J, Moorjani N, Radford M (2000) Anatomy of the sural nerve and its relation to the Achilles tendon. Foot Ankle Int 21:475–477 PubMed DOI
Wolff KS, Wibmer AG, Binder H, Grissmann T, Heinrich K, Schauer S, Nepp R, Rois S, Ritschl H, Teufelsbauer H, Pretterklieber ML (2012) The avascular plane of the Achilles tendon: a quantitative anatomic and angiographic approach and a base for a possible new treatment option after rupture. Eur J Radiol 81:1211–1215 PubMed DOI
Zwipp H, Rammelt S (2014) Tscherne Unfallchirurgie – Fuß. Springer, Berlin, pp 120–121 DOI