Assessing the ecological consequences of biodegradable plastics: Acute, chronic and multigenerational impacts of poly-3-hydroxybutyrate microplastics on freshwater invertebrate Daphnia magna
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39224316
PubMed Central
PMC11367482
DOI
10.1016/j.heliyon.2024.e36302
PII: S2405-8440(24)12333-X
Knihovny.cz E-zdroje
- Klíčová slova
- Biodegradable microplastics, Biofilm, D. magna, Growth, P3HB, Reproduction,
- Publikační typ
- časopisecké články MeSH
Microplastics, pervasive contaminants in freshwater ecosystems, have raised ecological concerns. Efforts are underway to substitute conventional plastics with biodegradable alternatives that should be more easily decomposed in the environment. However, the biodegradation of these alternatives depends on specific conditions such as temperature, humidity, pH, and microorganisms, which are not always met. Consequently, these biodegradable alternatives can also fragment and generate microplastics, which can be ingested and affect biota. In this study, we investigated the acute, chronic, and multigenerational effects of two fractions (particles <63 μm and particles <125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at varying concentrations on the inhibition, mortality, reproduction activity, and growth of the freshwater invertebrate Daphnia magna. No acute effects were observed for either size fraction. However, during chronic and multigenerational experiments, an increase in the concentration of P3HB microplastics corresponded with increased mortality, reduced reproductive activity, and slower growth among the mother organisms. Given the important role of D. magna in the food chain, these findings suggest that biodegradable microplastics may indeed negatively affect freshwater ecosystems.
Zobrazit více v PubMed
Hartmann N.B., Hüffer T., Thompson R.C., Hassellöv M., Verschoor A., Daugaard A.E., et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019;53:1039–1047. PubMed
Du S., Zhu R., Cai Y., Xu N., Yap P.-S., Zhang Y., et al. Environmental fate and impacts of microplastics in aquatic ecosystems: a review. RSC Adv [Internet] 2021;11:15762–15784. http://xlink.rsc.org/?DOI=D1RA00880C [cited 2023 Nov 29] PubMed PMC
de Sá L.C., Oliveira M., Ribeiro F., Rocha T.L., Futter M.N. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018;645:1029–1039. PubMed
Pradinaud C., Northey S., Amor B., Bare J., Benini L., Berger M., et al. Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources. Int J Life Cycle Assess [Internet] 2019;24:960–974. http://link.springer.com/10.1007/s11367-018-1543-8 [cited 2023 Dec 4] PubMed DOI PMC
Horton A.A., Walton A., Spurgeon D.J., Lahive E., Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment [Internet] 2017;586:127–141. https://linkinghub.elsevier.com/retrieve/pii/S0048969717302073 [cited 2023 Dec 4] PubMed
Yin J., Long Y., Xiao W., Liu D., Tian Q., Li Y., et al. Ecotoxicology of microplastics in Daphnia: a review focusing on microplastic properties and multiscale attributes of Daphnia. Ecotoxicol Environ Saf [Internet] 2023;249 doi: 10.1016/j.ecoenv.2022.114433. [cited 2023 Dec 4] PubMed DOI
Cole M., Lindeque P., Fileman E., Halsband C., Goodhead R., Moger J., et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013;47:6646–6655. PubMed
Murray F., Cowie P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758) Mar Pollut Bull [Internet] 2011;62:1207–1217. https://pubmed.ncbi.nlm.nih.gov/21497854/ [cited 2023 Dec 4] PubMed
Browne M.A., Dissanayake A., Galloway T.S., Lowe D.M., Thompson R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) Environ Sci Technol [Internet] 2008;42:5026–5031. https://pubs.acs.org/doi/10.1021/es800249a [cited 2023 Dec 4] PubMed DOI
Anbumani S., Kakkar P. Ecotoxicological effects of microplastics on biota: a review. Environ. Sci. Pollut. Res. Int. 2018;25:14373–14396. http://link.springer.com/10.1007/s11356-018-1999-x [cited 2021 Apr 20] PubMed DOI
Oehlmann J., Schulte-Oehlmann U., Kloas W., Jagnytsch O., Lutz I., Kusk K.O., et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet] 2009;364:2047–2062. https://royalsocietypublishing.org/doi/10.1098/rstb.2008.0242 [cited 2021 Apr 20] PubMed DOI PMC
Amasawa E., Yamanishi T., Nakatani J., Hirao M., Sato S. Climate change implications of bio-based and marine-biodegradable plastic: evidence from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Environ. Sci. Technol. 2021;55:3380–3388. PubMed
Patwary M.A.S., Surid S.M., Gafur M.A. Properties and applications of biodegradable polymers. J. Res. Updates Polym. Sci. 2020;9:32–41. https://lifescienceglobal.com/pms/index.php/jrups/article/view/7780 [Internet]
Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and compostable alternatives to conventional plastics. Phil. Trans. Biol. Sci. 2009;364:2127–2139. PubMed PMC
Luckachan G.E., Pillai C.K.S. Biodegradable polymers- A review on recent trends and emerging perspectives. J. Polym. Environ. 2011;19:637–676.
Zhao X., Cornish K., Vodovotz Y. Narrowing the gap for bioplastic use in food packaging: an update. Environ Sci Technol [Internet] 2020;54:4712–4732. https://pubs.acs.org/doi/10.1021/acs.est.9b03755 PubMed DOI
Fojt J., David J., Přikryl R., Řezáčová V., Kučerík J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci. Total Environ. 2020;745 https://linkinghub.elsevier.com/retrieve/pii/S0048969720345046 [Internet] PubMed
Sintim H.Y., Bary A.I., Hayes D.G., English M.E., Schaeffer S.M., Miles C.A., et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci. Total Environ. 2019;675:686–693. PubMed
Agarwal S. Biodegradable polymers: present opportunities and challenges in providing a microplastic‐free environment. Macromol. Chem. Phys. 2020;221 https://onlinelibrary.wiley.com/doi/10.1002/macp.202000017 [Internet] DOI
Wei X.-F., Bohlén M., Lindblad C., Hedenqvist M., Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res [Internet] 2021;198 https://linkinghub.elsevier.com/retrieve/pii/S0043135421003213 PubMed
Leja K., Lewandowicz G. Polymer biodegradation and biodegradable polymers – a review. Pol. J. Environ. Stud. 2010;19:255–266.
Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. https://onlinelibrary.wiley.com/doi/10.1002/jctb.1667 [Internet] DOI
Pospisilova A., Novackova I., Prikryl R. Isolation of poly(3-hydroxybutyrate) from bacterial biomass using soap made of waste cooking oil. Bioresour. Technol. 2021;326 PubMed
Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalnin M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem. 2000;35:573–579.
Turco R., Santagata G., Corrado I., Pezzella C., Di Serio M. In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: a review. Front Bioeng Biotechnol [Internet] 2021;8 https://www.frontiersin.org/articles/10.3389/fbioe.2020.619266/full PubMed DOI PMC
Anderson J.C., Park B.J., Palace V.P. Microplastics in aquatic environments: implications for Canadian ecosystems. Environ. Pollut. 2016;218:269–280. PubMed
Schür C., Zipp S., Thalau T., Wagner M. Microplastics but not natural particles induce multigenerational effects in Daphnia magna. Environ. Pollut. 2020;260 PubMed
Frydkjær C.K., Iversen N., Roslev P. Ingestion and egestion of microplastics by the cladoceran Daphnia magna: effects of regular and irregular shaped plastic and sorbed phenanthrene. Bull. Environ. Contam. Toxicol. 2017;99:655–661. PubMed
Scherer C., Brennholt N., Reifferscheid G., Wagner M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci Rep [Internet] 2017;7 https://www.nature.com/articles/s41598-017-17191-7 Available from: PubMed PMC
Eltemsah Y.S., Bøhn T. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna. Environ. Pollut. 2019;254 PubMed
Pikuda O., Dumont E.R., Chen Q., Macairan J.-R., Robinson S.A., Berk D., et al. Toxicity of microplastics and nanoplastics to Daphnia magna: current status, knowledge gaps and future directions. Trends in Analytical Chemistry [Internet] 2023;167 doi: 10.1016/j.trac.2023.117208. [cited 2023 Oct 9] DOI
Kokalj A.J., Kunej U., Skalar T. Screening study of four environmentally relevant microplastic pollutants: uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere. 2018;208:522–529. PubMed
Jemec A., Horvat P., Kunej U., Bele M., Kržan A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 2016;219:201–209. PubMed
Rehse S., Kloas W., Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere. 2016;153:91–99. PubMed
Canniff P.M., Hoang T.C. Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Sci. Total Environ. 2018;633:500–507. PubMed
Jaikumar G., Baas J., Brun N.R., Vijver M.G., Bosker T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 2018;239:733–740. PubMed
Colomer J., Müller M.F., Barcelona A., Serra T. Mediated food and hydrodynamics on the ingestion of microplastics by Daphnia magna. Environ. Pollut. 2019;251:434–441. PubMed
Magester S., Barcelona A., Colomer J., Serra T. Vertical distribution of microplastics in water bodies causes sublethal effects and changes in Daphnia magna swimming behaviour. Ecotoxicol. Environ. Saf. 2021;228 PubMed
de Castro D.G., Destro A.L.F., Coimbra E.C.L., da Silva A.L.L., Mounteer A.H. Effects of PET microplastics on the freshwater crustacean Daphnia similis Claus. Acta Limnologica Brasiliensia [Internet] 1976;2023(35) http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-975X2023000100706&tlng=en Available from:
Jaikumar G., Brun N.R., Vijver M.G., Bosker T. Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ. Pollut. 2019;249:638–646. PubMed
De Felice B., Sabatini V., Antenucci S., Gattoni G., Santo N., Bacchetta R., et al. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere. 2019;231:423–431. PubMed
Bosker T., Olthof G., Vijver M.G., Baas J., Barmentlo S.H. Significant decline of Daphnia magna population biomass due to microplastic exposure. Environ. Pollut. 2019;250:669–675. PubMed
Savva K., Farré M., Barata C. Sublethal effects of bio-plastic microparticles and their components on the behaviour of Daphnia magna. Environ Res [Internet] 2023;236 https://linkinghub.elsevier.com/retrieve/pii/S0013935123015797 Available from: PubMed
Zimmermann L., Göttlich S., Oehlmann J., Wagner M., Völker C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 2020;267 PubMed
Procházková P., Mácová S., Aydın S., Zlámalová Gargošová H., Kalčíková G., Kučerík J. Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor. Heliyon [Internet] 2023;9 https://linkinghub.elsevier.com/retrieve/pii/S2405844023103367 Available from: PubMed PMC
ASTM . 2007. E729-96 Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians.
OECD . OECD; 2004. Test No. 202: Daphnia Sp. Acute Immobilisation Test [Internet]https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en Available from:
Rosenfeldt R.R., Seitz F., Schulz R., Bundschuh M. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna. Environ. Sci. Technol. 2014;48:6965–6972. PubMed
OECD . OECD; 2012. Test No. 211: Daphnia Magna Reproduction Test [Internet]https://www.oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en Available from:
Karatzas P., Melagraki G., Ellis L.A., Lynch I., Varsou D., Afantitis A., et al. Development of deep learning models for predicting the effects of exposure to engineered nanomaterials on Daphnia magna. Small [Internet] 2020;16 https://onlinelibrary.wiley.com/doi/10.1002/smll.202001080 [cited 2024 Jan 2] PubMed DOI
Guilhermino L., Martins A., Cunha S., Fernandes J.O. Long-term adverse effects of microplastics on Daphnia magna reproduction and population growth rate at increased water temperature and light intensity: combined effects of stressors and interactions. Sci. Total Environ. [Internet] 2021;784 https://linkinghub.elsevier.com/retrieve/pii/S0048969721021525 [cited 2023 Dec 26] PubMed
Procházková P., Kalčíková G., Maršálková E., Zlámalová Gargošová H., Kučerík J. Innovative approach for quantitative determination of ingested microplastics by Daphnia magna: use of differential scanning calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2024 doi: 10.1007/s10973-024-12985-0. DOI
González-Pleiter M., Tamayo-Belda M., Pulido-Reyes G., Amariei G., Leganés F., Rosal R., et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci.: Nano. 2019;6:1382–1392.
Okeke E.S., Ezeorba T.P.C., Chen Y., Mao G., Feng W., Wu X. Ecotoxicological and health implications of microplastic-associated biofilms: a recent review and prospect for turning the hazards into benefits. Environ. Sci. Pollut. Res. Int. 2022;29:70611–70634. https://link.springer.com/10.1007/s11356-022-22612-w [cited 2024 Jan 2] PubMed DOI
Botterell Z.L.R., Beaumont N., Cole M., Hopkins F.E., Steinke M., Thompson R.C., et al. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals. Environ Sci Technol [Internet] 2020;54:12024–12033. https://pubs.acs.org/doi/10.1021/acs.est.0c02715 [cited 2023 Dec 28] PubMed DOI
Fan P., Yu H., Xi B., Tan W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ Int [Internet] 2022;163 https://linkinghub.elsevier.com/retrieve/pii/S0160412022001702 [cited 2023 Sep 26] PubMed
Rummel C.D., Jahnke A., Gorokhova E., Kühnel D., Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett [Internet] 2017;4:258–267. https://pubs.acs.org/doi/10.1021/acs.estlett.7b00164 [cited 2023 Dec 28] DOI
Trojan M., Koutný M., Brtnický M., Holátko J., Zlámalová Gargošová H., Fojt J., et al. The interaction of microplastics and microbioplastics with soil and a comparison of their potential to spread pathogens. Appl. Sci. 2024;14:4643.