Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38076089
PubMed Central
PMC10703853
DOI
10.1016/j.heliyon.2023.e23128
PII: S2405-8440(23)10336-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biodegradable plastics, Duckweed, Ecotoxicity, Micro-bioplastics, Microbeads, P3HB,
- Publikační typ
- časopisecké články MeSH
The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.
Zobrazit více v PubMed
Amasawa E., Yamanishi T., Nakatani J., Hirao M., Sato S. Climate change implications of bio-based and marine-biodegradable plastic: evidence from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Environ. Sci. Technol. 2021;55:3380–3388. doi: 10.1021/acs.est.0c06612. PubMed DOI
Patwary M.A.S., Surid S.M., Gafur M.A. Properties and applications of biodegradable polymers. J. Res. Updates Polym. Sci. 2020;9:32–41. doi: 10.6000/1929-5995.2020.09.03. DOI
Song J.H., Murphy R.J., Narayan R., Davies G.B.H. Biodegradable and compostable alternatives to conventional plastics. Phil. Trans. Biol. Sci. 2009;364:2127–2139. doi: 10.1098/rstb.2008.0289. PubMed DOI PMC
Luckachan G.E., Pillai C.K.S. Biodegradable polymers- A review on recent trends and emerging perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI
Zhao X., Cornish K., Vodovotz Y. Narrowing the gap for bioplastic Use in food packaging: an Update. Environ. Sci. Technol. 2020;54:4712–4732. doi: 10.1021/acs.est.9b03755. PubMed DOI
Ghanbarzadeh B., Almasi H. InTech; 2013. Biodegradable Polymers. Biodegradation - Life of Science; pp. 141–185. DOI
Vroman I., Tighzert L. Biodegradable polymers. Materials. 2009;2:307–344. doi: 10.3390/ma2020307. DOI
Leja K., Lewandowicz G. Polymer biodegradation and biodegradable polymers – a review. Pol. J. Environ. Stud. 2010;19:255–266.
Obruča S., Dvořák P., Sedláček P., Koller M., Sedlář K., Pernicová I., et al. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol. Adv. 2022;58 doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI
Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI
Pospisilova A., Novackova I., Prikryl R. Isolation of poly(3-hydroxybutyrate) from bacterial biomass using soap made of waste cooking oil. Bioresour. Technol. 2021;326 doi: 10.1016/J.BIORTECH.2021.124683. PubMed DOI
Yu L., Dean K., Li L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006;31:576–602. doi: 10.1016/j.progpolymsci.2006.03.002. DOI
Lenz R.W., Marchessault R.H. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI
Zinn M., Witholt B., Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001;53:5–21. doi: 10.1016/S0169-409X(01)00218-6. PubMed DOI
Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalnin M. Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry. 2000;35:573–579. doi: 10.1016/S0032-9592(99)00107-7. DOI
Turco R., Santagata G., Corrado I., Pezzella C., di Serio M. In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: a review. Front. Bioeng. Biotechnol. 2021;8 doi: 10.3389/fbioe.2020.619266. PubMed DOI PMC
Fojt J., David J., Přikryl R., Řezáčová V., Kučerík J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci. Total Environ. 2020;745 doi: 10.1016/j.scitotenv.2020.140975. PubMed DOI
Bagheri A.R., Laforsch C., Greiner A., Agarwal S. Fate of so-called biodegradable polymers in seawater and freshwater. Global Challenges. 2017;1 doi: 10.1002/gch2.201700048. PubMed DOI PMC
Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI
Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:5883–5890. doi: 10.1007/s00253-014-5653-3. PubMed DOI
Sintim H.Y., Bary A.I., Hayes D.G., English M.E., Schaeffer S.M., Miles C.A., et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci. Total Environ. 2019;675:686–693. doi: 10.1016/J.SCITOTENV.2019.04.179. PubMed DOI
Agarwal S. Biodegradable polymers: present opportunities and challenges in providing a microplastic-free environment. Macromol. Chem. Phys. 2020;221 doi: 10.1002/macp.202000017. DOI
Wei X.F., Bohlén M., Lindblad C., Hedenqvist M., Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021;198 doi: 10.1016/j.watres.2021.117123. PubMed DOI
Fan P., Yu H., Xi B., Tan W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ. Int. 2022;163 doi: 10.1016/j.envint.2022.107244. PubMed DOI
Emadian S.M., Onay T.T., Demirel B. Biodegradation of bioplastics in natural environments. Waste Management. 2017;59:526–536. doi: 10.1016/j.wasman.2016.10.006. PubMed DOI
Filiciotto L., Rothenberg G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem. 2021;14:56–72. doi: 10.1002/cssc.202002044. PubMed DOI PMC
Straub S., Hirsch P.E., Burkhardt-Holm P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Publ. Health. 2017;14:774. doi: 10.3390/IJERPH14070774. PubMed DOI PMC
Green D.S., Boots B., Sigwart J., Jiang S., Rocha C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 2016;208:426–434. doi: 10.1016/J.ENVPOL.2015.10.010. PubMed DOI
McAdam B., Fournet M.B., McDonald P., Mojicevic M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers. 2020;12:1–20. doi: 10.3390/POLYM12122908. PubMed DOI PMC
Alvarez Chavez B., Raghavan V., Tartakovsky B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv. 2022;12 doi: 10.1039/D1RA08796G. PubMed DOI PMC
Kepa Izaguirre J., Barañano L., Castañón S., Santos J.A.L., Teresa Cesário M., Manuela da Fonseca M.R., et al. Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste. Bioresour Bioprocess. 2021;8:39. doi: 10.1186/s40643-021-00392-4. PubMed DOI PMC
Bucci D.Z., Tavares L.B.B., Sell I. PHB packaging for the storage of food products. Polym. Test. 2005;24:564–571. doi: 10.1016/J.POLYMERTESTING.2005.02.008. DOI
ISO 20079 . 2005. ISO 20079, Determination of the Toxic Effect of Water Constituents and Waste Water on Duckweed (Lemna Minor) - Duckweed Growth Inhibition Test.
Li L., Sillanpää M., Tuominen M., Lounatmaa K., Schultz E. Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol. Environ. Saf. 2013;88:89–94. doi: 10.1016/J.ECOENV.2012.10.024. PubMed DOI
Rozman U., Turk T., Skalar T., Zupančič M., Korošin N.Č., Marinšek M., et al. vol. 773. 2021. (An Extensive Characterization of Various Environmentally Relevant Microplastics-Material Properties, Leaching and Ecotoxicity Testing). PubMed DOI
Kalčíková G., Žgajnar Gotvajn A., Kladnik A., Jemec A. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environ. Pollut. 2017;230:1108–1115. doi: 10.1016/j.envpol.2017.07.050. PubMed DOI
OECD . 2006. Test No. 221: Lemna Sp. Growth Inhibition Test. DOI
Mateos-Cárdenas A., Scott D.T., Seitmaganbetova G., Frank N.A.M. van P., O′Halloran J., Jansen M.A.K., Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.), Sci. Total Environ. 689 (2019) 413–421, doi:10.1016/j.scitotenv.2019.06.359. PubMed
Klun B., Rozman U., Ogrizek M., Kalčíková G. The first plastic produced, but the latest studied in microplastics research: the assessment of leaching, ecotoxicity and bioadhesion of Bakelite microplastics. Environ. Pollut. 2022;307 doi: 10.1016/j.envpol.2022.119454. PubMed DOI
Rozman U., Kalčíková G. The response of duckweed Lemna minor to microplastics and its potential Use as a bioindicator of microplastic pollution. Plants. 2022;11:2953. doi: 10.3390/plants11212953. PubMed DOI PMC
Radić S., Pevalek-Kozlina B. Effects of osmotic stress on antioxidative system of duckweed (Lemna minor L) Period. Biol. 2010;112:293–299.
Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350–382.
Ceschin S., Mariani F., Di Lernia D., Venditti I., Pelella E., Iannelli M.A. Effects of microplastic contamination on the aquatic plant Lemna minuta (least duckweed) Plants. 2023;12:207. doi: 10.3390/plants12010207. PubMed DOI PMC
Cui R., Kwak J Il, An Y.-J. Multigenerational effects of microplastic fragments derived from polyethylene terephthalate bottles on duckweed Lemna minor: size-dependent effects of microplastics on photosynthesis. Sci. Total Environ. 2023;872 doi: 10.1016/j.scitotenv.2023.162159. PubMed DOI PMC
Fojt J., Denková P., Brtnický M., Holátko J., Řezáčová V., Pecina V., et al. Influence of poly-3-hydroxybutyrate micro-bioplastics and polyethylene terephthalate microplastics on the soil organic matter structure and soil water properties. Environ. Sci. Technol. 2022;56:10732–10742. doi: 10.1021/ACS.EST.2C01970/ASSET/IMAGES/LARGE/ES2C01970_0006.JPEG. PubMed DOI
Stanica-Ezeanu D., Matei D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci. Rep. 2021;11:4431. doi: 10.1038/s41598-021-83659-2. PubMed DOI PMC
Su Y., Cheng Z., Hou Y., Lin S., Gao L., Wang Z., et al. Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquat. Toxicol. 2022;244 doi: 10.1016/j.aquatox.2022.106097. PubMed DOI
González-Pleiter M., Tamayo-Belda M., Pulido-Reyes G., Amariei G., Leganés F., Rosal R., et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci.: Nano. 2019;6:1382–1392. doi: 10.1039/C8EN01427B. DOI
Shruti V.C., Kutralam-Muniasamy G. Bioplastics: missing link in the era of microplastics. Sci. Total Environ. 2019;697 doi: 10.1016/J.SCITOTENV.2019.134139. PubMed DOI
Anderson J.C., Park B.J., Palace V.P. Microplastics in aquatic environments: implications for Canadian ecosystems. Environ. Pollut. 2016;218:269–280. doi: 10.1016/j.envpol.2016.06.074. PubMed DOI
al Harraq A., Bharti B. Microplastics through the lens of colloid science. ACS Environmental Au. 2022;2:3–10. doi: 10.1021/acsenvironau.1c00016. PubMed DOI PMC
Hermans C., Hammond J.P., White P.J., Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006;11:610–617. doi: 10.1016/J.TPLANTS.2006.10.007. PubMed DOI
Cedergreen N., Madsen T.V. Nitrogen uptake by the floating macrophyte Lemna minor. New Phytol. 2002;155:285–292. doi: 10.1046/J.1469-8137.2002.00463.X. PubMed DOI
He B., Duodu G.O., Rintoul L., Ayoko G.A., Goonetilleke A. Influence of microplastics on nutrients and metal concentrations in river sediments. Environ. Pollut. 2020;263 doi: 10.1016/J.ENVPOL.2020.114490. PubMed DOI
Swiontek Brzezinka M., Richert A., Kalwasińska A., Świątczak J., Deja-Sikora E., Walczak M., et al. Microbial degradation of polyhydroxybutyrate with embedded polyhexamethylene guanidine derivatives. Int. J. Biol. Macromol. 2021;187:309–318. doi: 10.1016/J.IJBIOMAC.2021.07.135. PubMed DOI
Sooriyakumar P., Bolan N., Kumar M., Singh L., Yu Y., Li Y., et al. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: a review. Journal of Hazardous Materials Advances. 2022;6 doi: 10.1016/J.HAZADV.2022.100077. DOI
Wang J., Guo X., Xue J. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ. Sci. Technol. 2021;55:12780–12790. doi: 10.1021/ACS.EST.1C04466/ASSET/IMAGES/LARGE/ES1C04466_0008.JPEG. PubMed DOI
Lobelle D., Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 2011;62:197–200. doi: 10.1016/J.MARPOLBUL.2010.10.013. PubMed DOI
Tu C., Chen T., Zhou Q., Liu Y., Wei J., Waniek J.J., et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Sci. Total Environ. 2020;734 doi: 10.1016/J.SCITOTENV.2020.139237. PubMed DOI
He S., Jia M., Xiang Y., Song B., Xiong W., Cao J., et al. Biofilm on microplastics in aqueous environment: physicochemical properties and environmental implications. J. Hazard Mater. 2022;424 doi: 10.1016/J.JHAZMAT.2021.127286. PubMed DOI
Chen X., Chen X., Zhao Y., Zhou H., Xiong X., Wu C. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. Sci. Total Environ. 2020;719 doi: 10.1016/J.SCITOTENV.2020.137276. PubMed DOI
Brtnicky M., Pecina V., Holatko J., Hammerschmiedt T., Mustafa A., Kintl A., et al. Effect of biodegradable poly-3-hydroxybutyrate amendment on the soil biochemical properties and fertility under varying sand loads. Chemical and Biological Technologies in Agriculture. 2022;9:1–13. doi: 10.1186/S40538-022-00345-9. DOI
Zhang H., Jennings A., Barlow P.W., Forde B.G. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci U S A. 1999;96:6529–6534. doi: 10.1073/PNAS.96.11.6529/ASSET/7FD992D1-B96A-4FEA-A511-C76AC6A4C6CF/ASSETS/GRAPHIC/PQ1194606005.JPEG. PubMed DOI PMC
Kul R., Ekinci M., Turan M., Ors S., Yildirim E., Kul R., et al. Plant Roots. IntechOpen; 2021. How Abiotic Stress Conditions Affects Plant Roots. [Internet] DOI
Arts G.H.P., Belgers J.D.M., Hoekzema C.H., Thissen J.T.N.M. Sensitivity of submersed freshwater macrophytes and endpoints in laboratory toxicity tests. Environ. Pollut. 2008;153:199–206. doi: 10.1016/J.ENVPOL.2007.07.019. PubMed DOI