Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39224930
PubMed Central
PMC11403552
DOI
10.1021/acsami.4c09301
Knihovny.cz E-resources
- Keywords
- SERS, chiral gold nanoparticles, enantioselective detection, naproxen, plasmon coupling,
- Publication type
- Journal Article MeSH
Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition. This arrangement ensured a homogeneous distribution of chiral plasmonic hot spots and facilitated the enhancement of the SERS response of targeted analytes through plasmon coupling between gold helicoid multimers (formed in the grating valleys) and adjacent regions of the gold grating. Naproxen enantiomers (R(+) and S(-)) were employed as model compounds, revealing a clear dependence of their SERS response on the chirality of the gold helicoids. Additionally, propranolol and penicillamine enantiomers were used to validate the universality of the proposed approach. Finally, numerical simulations were conducted to elucidate the roles of intensified local electric field and optical helicity density on the SERS signal intensity and on the chirality of the nanoparticles and enantiomers. Unlike previously reported methods, our approach relies on the excitation of a chiral plasmonic near-field and its interaction with the chiral environment of analyte molecules, obviating the need for the enantioselective entrapment of targeted molecules. Moreover, our method is not limited to specific analyte classes and can be applied to a broad range of chiral molecules.
See more in PubMed
Brandt J. R.; Salerno F.; Fuchter M. J. The Added Value of Small-Molecule Chirality in Technological Applications. Nat. Rev. Chem. 2017, 1 (6), 1–12. 10.1038/s41570-017-0045. DOI
Zhou Y.; Yoon J. Recent Progress in Fluorescent and Colorimetric Chemosensors for Detection of Amino Acids. Chem. Soc. Rev. 2012, 41 (1), 52–67. 10.1039/C1CS15159B. PubMed DOI
Yashima E.; Maeda K.; Nishimura T. Detection and Amplification of Chirality by Helical Polymers. Chem. – Eur. J. 2004, 10 (1), 42–51. 10.1002/chem.200305295. PubMed DOI
Ariga K.; Ito H.; Hill J. P.; Tsukube H. Molecular Recognition: From Solution Science to Nano/Materials Technology. Chem. Soc. Rev. 2012, 41 (17), 5800–5835. 10.1039/C2CS35162E. PubMed DOI
Preinerstorfer B.; Lämmerhofer M.; Lindner W. Advances in enantioselective separations using electromigration capillary techniques. ELECTROPHORESIS 2009, 30 (1), 100–132. 10.1002/elps.200800607. PubMed DOI
Guselnikova O.; Postnikov P.; Trelin A.; Švorčík V.; Lyutakov O. Dual Mode Chip Enantioselective Express Discrimination of Chiral Amines via Wettability-Based Mobile Application and Portable Surface-Enhanced Raman Spectroscopy Measurements. ACS Sens 2019, 4 (4), 1032–1039. 10.1021/acssensors.9b00225. PubMed DOI
Assavapanumat S.; Ketkaew M.; Kuhn A.; Wattanakit C. Synthesis, Characterization, and Electrochemical Applications of Chiral Imprinted Mesoporous Ni Surfaces. J. Am. Chem. Soc. 2019, 141 (47), 18870–18876. 10.1021/jacs.9b10507. PubMed DOI
Niu X.; Yang X.; Li H.; Liu J.; Liu Z.; Wang K. Application of Chiral Materials in Electrochemical Sensors. Microchim. Acta 2020, 187 (12), 676.10.1007/s00604-020-04646-4. PubMed DOI
Liu C.; Yang J.-C.; Lam J. W. Y.; Feng H.-T.; Tang B. Z. Chiral Assembly of Organic Luminogens with Aggregation-Induced Emission. Chem. Sci. 2022, 13 (3), 611–632. 10.1039/D1SC02305E. PubMed DOI PMC
Liang X.; Liang W.; Jin P.; Wang H.; Wu W.; Yang C. Advances in Chirality Sensing with Macrocyclic Molecules. Chemosensors 2021, 9 (10), 279.10.3390/chemosensors9100279. DOI
Guselnikova O.; Postnikov P.; Kolska Z.; Zaruba K.; Kohout M.; Elashnikov R.; Svorcik V.; Lyutakov O. Homochiral Metal-Organic Frameworks Functionalized SERS Substrate for Atto-Molar Enantio-Selective Detection. Appl. Mater. Today 2020, 20, 100666.10.1016/j.apmt.2020.100666. DOI
Sawada M. Chiral Recognition Detected by Fast Atom Bombardment Mass Spectrometry. Mass Spectrom. Rev. 1997, 16 (2), 73–90. 10.1002/(SICI)1098-2787(1997)16:2<73::AID-MAS2>3.0.CO;2-6. PubMed DOI
Zor E.; Bingol H.; Ersoz M. Chiral Sensors. TrAC Trends Anal. Chem. 2019, 121, 115662.10.1016/j.trac.2019.115662. DOI
Qian H.-L.; Xu S.-T.; Yan X.-P. Recent Advances in Separation and Analysis of Chiral Compounds. Anal. Chem. 2023, 95 (1), 304–318. 10.1021/acs.analchem.2c04371. PubMed DOI
Hao C.; Xu L.; Kuang H.; Xu C. Artificial Chiral Probes and Bioapplications. Adv. Mater. 2020, 32 (41), 1802075.10.1002/adma.201802075. PubMed DOI
Wattanakit C.; Côme Y. B. S.; Lapeyre V.; Bopp P. A.; Heim M.; Yadnum S.; Nokbin S.; Warakulwit C.; Limtrakul J.; Kuhn A. Enantioselective Recognition at Mesoporous Chiral Metal Surfaces. Nat. Commun. 2014, 5 (1), 3325.10.1038/ncomms4325. PubMed DOI PMC
Kneipp K.; Wang Y.; Kneipp H.; Perelman L. T.; Itzkan I.; Dasari R. R.; Feld M. S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667–1670. 10.1103/PhysRevLett.78.1667. DOI
Xu H.; Bjerneld E. J.; Käll M.; Börjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83 (21), 4357–4360. 10.1103/PhysRevLett.83.4357. DOI
Wang Y.; Liu J.; Zhao X.; Yang C.; Ozaki Y.; Xu Z.; Zhao B.; Yu Z. A Chiral Signal-Amplified Sensor for Enantioselective Discrimination of Amino Acids Based on Charge Transfer-Induced SERS. Chem. Commun. 2019, 55 (65), 9697–9700. 10.1039/C9CC04665H. PubMed DOI
Kong H.; Sun X.; Yang L.; Liu X.; Yang H.; Jin R.-H. Polydopamine/Silver Substrates Stemmed from Chiral Silica for SERS Differentiation of Amino Acid Enantiomers. ACS Appl. Mater. Interfaces 2020, 12 (26), 29868–29875. 10.1021/acsami.0c08780. PubMed DOI
Sun X.; Kong H.; Zhou Q.; Tsunega S.; Liu X.; Yang H.; Jin R.-H. Chiral Plasmonic Nanoparticle Assisted Raman Enantioselective Recognition. Anal. Chem. 2020, 92 (12), 8015–8020. 10.1021/acs.analchem.0c01311. PubMed DOI
Kuang X.; Ye S.; Li X.; Ma Y.; Zhang C.; Tang B. A New Type of Surface-Enhanced Raman Scattering Sensor for the Enantioselective Recognition of d/l -Cysteine and d/l -Asparagine Based on a Helically Arranged Ag NPs@homochiral MOF. Chem. Commun. 2016, 52 (31), 5432–5435. 10.1039/C6CC00320F. PubMed DOI
Wang Y.; Yu Z.; Ji W.; Tanaka Y.; Sui H.; Zhao B.; Ozaki Y. Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A SERS Study. Angew. Chem. 2014, 126 (50), 14086–14090. 10.1002/ange.201407642. PubMed DOI
Xu W.; Cheng M.; Zhang S.; Wu Q.; Liu Z.; Dhinakaran M. K.; Liang F.; Kovaleva E. G.; Li H. Recent Advances in Chiral Discrimination on Host–Guest Functionalized Interfaces. Chem. Commun. 2021, 57 (61), 7480–7492. 10.1039/D1CC01501J. PubMed DOI
Frosch T.; Knebl A.; Frosch T. Recent Advances in Nano-Photonic Techniques for Pharmaceutical Drug Monitoring with Emphasis on Raman Spectroscopy. Nanophotonics 2020, 9 (1), 19–37. 10.1515/nanoph-2019-0401. DOI
Mastroianni A. J.; Claridge S. A.; Alivisatos A. P. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds. J. Am. Chem. Soc. 2009, 131 (24), 8455–8459. 10.1021/ja808570g. PubMed DOI PMC
Shen X.; Song C.; Wang J.; Shi D.; Wang Z.; Liu N.; Ding B. Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-Dimensional Plasmonic Chiral Nanostructures. J. Am. Chem. Soc. 2012, 134 (1), 146–149. 10.1021/ja209861x. PubMed DOI
Abdulrahman N. A.; Fan Z.; Tonooka T.; Kelly S. M.; Gadegaard N.; Hendry E.; Govorov A. O.; Kadodwala M. Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures. Nano Lett. 2012, 12 (2), 977–983. 10.1021/nl204055r. PubMed DOI
Lee H.-E.; Ahn H.-Y.; Mun J.; Lee Y. Y.; Kim M.; Cho N. H.; Chang K.; Kim W. S.; Rho J.; Nam K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556 (7701), 360–365. 10.1038/s41586-018-0034-1. PubMed DOI
Lee H.-E.; Kim R. M.; Ahn H.-Y.; Lee Y. Y.; Byun G. H.; Im S. W.; Mun J.; Rho J.; Nam K. T. Cysteine-Encoded Chirality Evolution in Plasmonic Rhombic Dodecahedral Gold Nanoparticles. Nat. Commun. 2020, 11 (1), 263.10.1038/s41467-019-14117-x. PubMed DOI PMC
Kim J. W.; Cho N. H.; Lim Y.-C.; Im S. W.; Han J. H.; Nam K. T. Controlling the Size and Circular Dichroism of Chiral Gold Helicoids. Mater. Adv. 2021, 2 (21), 6988–6995. 10.1039/D1MA00783A. DOI
Yao G.; Huang Q. DFT and SERS Study of L-Cysteine Adsorption on the Surface of Gold Nanoparticles. J. Phys. Chem. C 2018, 122 (27), 15241–15251. 10.1021/acs.jpcc.8b00949. DOI
Jing C.; Fang Y. Experimental (SERS) and Theoretical (DFT) Studies on the Adsorption Behaviors of l-Cysteine on Gold/Silver Nanoparticles. Chem. Phys. 2007, 332 (1), 27–32. 10.1016/j.chemphys.2006.11.019. DOI
Krausbeck F.; Autschbach J.; Reiher M. Calculated Resonance Vibrational Raman Optical Activity Spectra of Naproxen and Ibuprofen. J. Phys. Chem. A 2016, 120 (49), 9740–9748. 10.1021/acs.jpca.6b09975. PubMed DOI
Steenen S. A.; van Wijk A. J.; van der Heijden G. J.; van Westrhenen R.; de Lange J.; de Jongh A. Propranolol for the Treatment of Anxiety Disorders: Systematic Review and Meta-Analysis. J. Psychopharmacol. (Oxf.) 2016, 30 (2), 128–139. 10.1177/0269881115612236. PubMed DOI PMC
Ishak R.; Abbas O. Penicillamine Revisited: Historic Overview and Review of the Clinical Uses and Cutaneous Adverse Effects. Am. J. Clin. Dermatol. 2013, 14 (3), 223–233. 10.1007/s40257-013-0022-z. PubMed DOI
Ding S.-Y.; You E.-M.; Tian Z.-Q.; Moskovits M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46 (13), 4042–4076. 10.1039/C7CS00238F. PubMed DOI
Ru E. L.; Etchegoin P.. Principles of Surface-Enhanced Raman Spectroscopy And Related Plasmonic Effects; Elsevier, 2008.
Tang Y.; Cohen A. E. Optical Chirality and Its Interaction with Matter. Phys. Rev. Lett. 2010, 104 (16), 163901.10.1103/PhysRevLett.104.163901. PubMed DOI
Yoo S.; Park Q.-H. Metamaterials and Chiral Sensing: A Review of Fundamentals and Applications. Nanophotonics 2019, 8 (2), 249–261. 10.1515/nanoph-2018-0167. DOI
Kim R. M.; Huh J.-H.; Yoo S.; Kim T. G.; Kim C.; Kim H.; Han J. H.; Cho N. H.; Lim Y.-C.; Im S. W.; Im E.; Jeong J. R.; Lee M. H.; Yoon T.-Y.; Lee H.-Y.; Park Q.-H.; Lee S.; Nam K. T. Enantioselective Sensing by Collective Circular Dichroism. Nature 2022, 612 (7940), 470–476. 10.1038/s41586-022-05353-1. PubMed DOI
Han J. H.; Lim Y.-C.; Kim R. M.; Lv J.; Cho N. H.; Kim H.; Namgung S. D.; Im S. W.; Nam K. T. Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing. ACS Nano 2023, 17 (3), 2306–2317. 10.1021/acsnano.2c08867. PubMed DOI
Kim R. M.; Han J. H.; Lee S. M.; Kim H.; Lim Y.-C.; Lee H.-E.; Ahn H.-Y.; Lee Y. H.; Ha I. H.; Nam K. T. Chiral Plasmonic Sensing: From the Perspective of Light–Matter Interaction. J. Chem. Phys. 2024, 160 (6), 061001.10.1063/5.0178485. PubMed DOI
Xiao T.-H.; Cheng Z.; Luo Z.; Isozaki A.; Hiramatsu K.; Itoh T.; Nomura M.; Iwamoto S.; Goda K. All-Dielectric Chiral-Field-Enhanced Raman Optical Activity. Nat. Commun. 2021, 12 (1), 3062.10.1038/s41467-021-23364-w. PubMed DOI PMC
Mun J.; Rho J. Importance of Higher-Order Multipole Transitions on Chiral Nearfield Interactions. Nanophotonics 2019, 8 (5), 941–948. 10.1515/nanoph-2019-0046. DOI
Nesterov M. L.; Yin X.; Schäferling M.; Giessen H.; Weiss T. The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics 2016, 3 (4), 578–583. 10.1021/acsphotonics.5b00637. DOI
Kelly C.; Khosravi Khorashad L.; Gadegaard N.; Barron L. D.; Govorov A. O.; Karimullah A. S.; Kadodwala M. Controlling Metamaterial Transparency with Superchiral Fields. ACS Photonics 2018, 5 (2), 535–543. 10.1021/acsphotonics.7b01071. DOI
Both S.; Schäferling M.; Sterl F.; Muljarov E. A.; Giessen H.; Weiss T. Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano 2022, 16 (2), 2822–2832. 10.1021/acsnano.1c09796. PubMed DOI
Wu H.-L.; Tsai H.-R.; Hung Y.-T.; Lao K.-U.; Liao C.-W.; Chung P.-J.; Huang J.-S.; Chen I.-C.; Huang M. H. A Comparative Study of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra as Highly Sensitive SERS Substrates. Inorg. Chem. 2011, 50 (17), 8106–8111. 10.1021/ic200504n. PubMed DOI
Ahn H.-Y.; Lee H.-E.; Jin K.; Nam K. T. Extended Gold Nano-Morphology Diagram: Synthesis of Rhombic Dodecahedra Using CTAB and Ascorbic Acid. J. Mater. Chem. C 2013, 1 (41), 6861–6868. 10.1039/C3TC31135J. DOI
Kimling J.; Maier M.; Okenve B.; Kotaidis V.; Ballot H.; Plech A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110 (32), 15700–15707. 10.1021/jp061667w. PubMed DOI
Plasmonic Chirality Meets Reactivity: Challenges and Opportunities