Plasmonic Chirality Meets Reactivity: Challenges and Opportunities
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40008194
PubMed Central
PMC11849436
DOI
10.1021/acs.jpcc.4c08454
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The unique optoelectronic features associated with plasmonic nanomaterials in a broad energy range of the electromagnetic spectrum have the potential to overcome the current limitations in the development of heterogeneous photocatalytic systems with enantioselective capabilities. Recent advancements in creating plasmonic structures with strong chiroptical features have already enabled asymmetric recognition of molecular substrates or even polarization-sensitive chemical reactivity under visible and near-infrared irradiation. Nevertheless, important developments need to be achieved to attain real enantioselective reactivity solely driven by plasmons. This Perspective discusses current trends in the formation of chiral plasmonic materials and their application as photocatalysts to achieve stereocontrol in photochemical reactions. We summarize the challenges in this field and offer insight into future opportunities that could enhance the effectiveness of these innovative systems.
Department of Chemistry and NIS Centre University of Turin Turin 10125 Italy
ENS de Lyon CNRS LCH UMR 5182 F 69342 Lyon Cedex 07 France
Université de Strasbourg CNRS Institut Charles Sadron UPR22 F 67000 Strasbourg France
Université of Bordeaux CNRS Bordeaux INP CBMN UMR 5248 F 33600 Pessac France
Zobrazit více v PubMed
Pasteur L. Mémoire Sur La Relation Quei Peut Exister Entre La Forme Cristalline et La Composition Chimique et Sur La Cause de La Polarisation Rotatoire. Comptes Rendus 1848, 26, 535–538.
Lee H. E.; Ahn H. Y.; Mun J.; Lee Y. Y.; Kim M.; Cho N. H.; Chang K.; Kim W. S.; Rho J.; Nam K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556, 360–364. 10.1038/s41586-018-0034-1. PubMed DOI
González-Rubio G.; Mosquera J.; Kumar V.; Pedrazo-Tardajos A.; Llombart P.; Solís D. M.; Lobato I.; Noya E. G.; Guerrero-Martínez A.; Taboada J. M.; et al. Micelle-Directed Chiral Seeded Growth on Anisotropic Gold Nanocrystals. Science 2020, 368, 1472–1477. 10.1126/science.aba0980. PubMed DOI
Ni B.; Mychinko M.; Gómez-Graña S.; Morales-Vidal J.; Obelleiro-Liz M.; Heyvaert W.; Vila-Liarte D.; Zhuo X.; Albrecht W.; Zheng G.; et al. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity. Adv. Mater. 2023, 35, 220829910.1002/adma.202208299. PubMed DOI
Kuzyk A.; Schreiber R.; Fan Z.; Pardatscher G.; Roller E. M.; Högele A.; Simmel F. C.; Govorov A. O.; Liedl T. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314. 10.1038/nature10889. PubMed DOI
Kim J. W.; Cho N. H.; Kim R. M.; Han J. H.; Choi S.; Namgung S. D.; Kim H.; Nam K. T. Magnetic Control of the Plasmonic Chirality in Gold Helicoids. Nano Lett. 2022, 22, 8181–8188. 10.1021/acs.nanolett.2c02661. PubMed DOI
Bainova P.; Joly J. P.; Urbanova M.; Votkina D.; Erzina M.; Vokata B.; Trelin A.; Fitl P.; Audran G.; Vanthuyne N.; et al. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catal. 2023, 13, 12859–12867. 10.1021/acscatal.3c02958. DOI
Tian Y.; Wu F.; Lv X.; Luan X.; Li F.; Xu G.; Niu W. Enantioselective Surface-Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards. Adv. Mater. 2024, 36, 240337310.1002/adma.202403373. PubMed DOI
Kim R. M.; Huh J. H.; Yoo S. J.; Kim T. G.; Kim C.; Kim H.; Han J. H.; Cho N. H.; Lim Y. C.; Im S. W.; et al. Enantioselective Sensing by Collective Circular Dichroism. Nature 2022, 612, 470–476. 10.1038/s41586-022-05353-1. PubMed DOI
Gansel J. K.; Thiel M.; Rill M. S.; Decker M.; Bade K.; Saile V.; von Freymann G.; Linden S.; Wegener M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. 10.1126/science.1177031. PubMed DOI
Noyori R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture 2001). Angew. Chemie Int. Ed. 2002, 41, 2008–2022. 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4. PubMed DOI
Heitbaum M.; Glorius F.; Escher I. Asymmetric Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2006, 45, 4732–4762. 10.1002/anie.200504212. PubMed DOI
Thomas J. M.; Raja R. Exploiting Nanospace for Asymmetric Catalysis: Confinement of Immobilized, Single-Site Chiral Catalysts Enhances Enantioselectivity. Acc. Chem. Res. 2008, 41, 708–720. 10.1021/ar700217y. PubMed DOI
Mallat T.; Orglmeister E.; Baiker A. Asymmetric Catalysis at Chiral Metal Surfaces. Chem. Rev. 2007, 107, 4863–4890. 10.1021/cr0683663. PubMed DOI
Marzo L.; Pagire S. K.; Reiser O.; König B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angewandte Chemie - International Edition. 2018, 57, 10034–10072. 10.1002/anie.201709766. PubMed DOI
Jiang C.; Chen W.; Zheng W. H.; Lu H. Advances in Asymmetric Visible-Light Photocatalysis, 2015–2019. Org. Biomol. Chem. 2019, 17, 8673–8689. 10.1039/C9OB01609K. PubMed DOI
Huo H.; Shen X.; Wang C.; Zhang L.; Röse P.; Chen L. A.; Harms K.; Marsch M.; Hilt G.; Meggers E. Asymmetric Photoredox Transition-Metal Catalysis Activated by Visible Light. Nature 2014, 515, 100–103. 10.1038/nature13892. PubMed DOI
Nicewicz D. A.; Macmillan D. W. C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008, 322, 77–80. 10.1126/science.1161976. PubMed DOI PMC
Guerrero-Martínez A.; Auguié B.; Alonso-Gómez J. L.; Džolič Z.; Gómez-Grańa S.; Žinić M.; Cid M. M.; Liz-Marzán L. M. Intense Optical Activity from Three-Dimensional Chiral Ordering of Plasmonic Nanoantennas. Angew. Chem., Int. Ed. 2011, 50, 5499–5503. 10.1002/anie.201007536. PubMed DOI
Fan Z.; Govorov A. O. Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies. Nano Lett. 2010, 10, 2580–2587. 10.1021/nl101231b. PubMed DOI
Song C.; Blaber M. G.; Zhao G.; Zhang P.; Fry H. C.; Schatz G. C.; Rosi N. L. Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Lett. 2013, 13, 3256–3261. 10.1021/nl4013776. PubMed DOI PMC
Cheng J.; Le Saux G.; Gao J.; Buffeteau T.; Battie Y.; Barois P.; Ponsinet V.; Delville M. H.; Ersen O.; Pouget E.; et al. GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano 2017, 11, 3806–3818. 10.1021/acsnano.6b08723. PubMed DOI
Gao J.; Wu W.; Lemaire V.; Carvalho A.; Nlate S.; Buffeteau T.; Oda R.; Battie Y.; Pauly M.; Pouget E. Tuning the Chiroptical Properties of Elongated Nano-Objects via Hierarchical Organization. ACS Nano 2020, 14, 4111–4121. 10.1021/acsnano.9b08823. PubMed DOI
Auguié B.; Alonso-Gómez J. L.; Guerrero-Martínez A.; Liz-Marzán L. M. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851. 10.1021/jz200279x. PubMed DOI
Kuzyk A.; Schreiber R.; Zhang H.; Govorov A. O.; Liedl T.; Liu N. Reconfigurable 3D Plasmonic Metamolecules. Nat. Mater. 2014, 13, 862–866. 10.1038/nmat4031. PubMed DOI
Yin X.; Schäferling M.; Metzger B.; Giessen H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Lett. 2013, 13, 6238–6243. 10.1021/nl403705k. PubMed DOI
Zhao Y.; Belkin M. A.; Alù A. Twisted Optical Metamaterials for Planarized Ultrathin Broadband Circular Polarizers. Nat. Commun. 2012, 3, 870.10.1038/ncomms1877. PubMed DOI
Hu H.; Sekar S.; Wu W.; Battie Y.; Lemaire V.; Arteaga O.; Poulikakos L. V.; Norris D. J.; Giessen H.; Decher G.; et al. Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano 2021, 15, 13653–13661. 10.1021/acsnano.1c04804. PubMed DOI
Sekar S.; Lemaire V.; Hu H.; Decher G.; Pauly M. Anisotropic Optical and Conductive Properties of Oriented 1D-Nanoparticle Thin Films Made by Spray-Assisted Self-Assembly. Faraday Discuss. 2016, 191, 373–389. 10.1039/C6FD00017G. PubMed DOI
Hu H.; Pauly M.; Felix O.; Decher G. Spray-Assisted Alignment of Layer-by-Layer Assembled Silver Nanowires: A General Approach for the Preparation of Highly Anisotropic Nano-Composite Films. Nanoscale 2017, 9, 1307–1314. 10.1039/C6NR08045F. PubMed DOI
Wu W.; Battie Y.; Lemaire V.; Decher G.; Pauly M. Structure-Dependent Chiroptical Properties of Twisted Multilayered Silver Nanowire Assemblies. Nano Lett. 2021, 21, 8298–8303. 10.1021/acs.nanolett.1c02812. PubMed DOI
Carone A.; Mariani P.; Désert A.; Romanelli M.; Marcheselli J.; Garavelli M.; Corni S.; Rivalta I.; Parola S. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles. ACS Nano 2022, 16, 1089–1101. 10.1021/acsnano.1c08824. PubMed DOI
Ni B.; González-Rubio G.; Van Gordon K.; Bals S.; Kotov N. A.; Liz-Marzán L. M. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. Adv. Mater. 2024, 36, 241247310.1002/adma.202412473. PubMed DOI PMC
Xu L.; Wang X.; Wang W.; Sun M.; Choi W. J.; Kim J. Y.; Hao C.; Li S.; Qu A.; Lu M.; et al. Enantiomer-Dependent Immunological Response to Chiral Nanoparticles. Nature 2022, 601, 366–373. 10.1038/s41586-021-04243-2. PubMed DOI
Biswas A.; Wang T.; Biris A. S. Single Metal Nanoparticle Spectroscopy: Optical Characterization of Individual Nanosystems for Biomedical Applications. Nanoscale 2010, 2, 1560–1572. 10.1039/c0nr00133c. PubMed DOI
Sa J.; Hu N.; Heyvaert W.; Van Gordon K.; Li H.; Wang L.; Bals S.; Liz-Marzán L. M.; Ni W. Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods. Chem. Mater. 2023, 35, 6782–6789. 10.1021/acs.chemmater.3c01044. DOI
Smith K. W.; Zhao H.; Zhang H.; Sánchez-Iglesias A.; Grzelczak M.; Wang Y.; Chang W.-S.; Nordlander P.; Liz-Marzán L. M.; Link S. Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. ACS Nano 2016, 10, 6180–6188. 10.1021/acsnano.6b02194. PubMed DOI
Li H.; Van Gordon K.; Zhang H.; Wang L.; Hu N.; Liz-Marzán L. M.; Ni W. Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods. ACS Nano 2025, 19, 3635.10.1021/acsnano.4c14015. PubMed DOI
Goerlitzer E. S. A.; Puri A. S.; Moses J. J.; Poulikakos L. V.; Vogel N. The Beginner’s Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large-Area Substrates. Adv. Opt. Mater. 2021, 9, 210037810.1002/adom.202100378. DOI
Wang Z.; Cheng F.; Winsor T.; Liu Y. Optical Chiral Metamaterials: A Review of the Fundamentals, Fabrication Methods and Applications. Nanotechnology 2016, 27, 41200110.1088/0957-4484/27/41/412001. PubMed DOI
Khorasaninejad M.; Chen W. T.; Zhu A. Y.; Oh J.; Devlin R. C.; Rousso D.; Capasso F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595–4600. 10.1021/acs.nanolett.6b01897. PubMed DOI
Hao C.; Xu L.; Kuang H.; Xu C. Artificial Chiral Probes and Bioapplications. Adv. Mater. 2020, 32, 180207510.1002/adma.201802075. PubMed DOI
Linic S.; Chavez S.; Elias R. Flow and Extraction of Energy and Charge Carriers in Hybrid Plasmonic Nanostructures. Nat. Mater. 2021, 20, 916–924. 10.1038/s41563-020-00858-4. PubMed DOI
Gargiulo J.; Berté R.; Li Y.; Maier S. A.; Cortés E. From Optical to Chemical Hot Spots in Plasmonics. Acc. Chem. Res. 2019, 52, 2525–2535. 10.1021/acs.accounts.9b00234. PubMed DOI
Brissaud C.; Besteiro L. V.; Piquemal J. Y.; Comesaña-Hermo M. Plasmonics: A Versatile Toolbox for Heterogeneous Photocatalysis. Sol. RRL 2023, 7, 230019510.1002/solr.202300195. DOI
Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247. 10.1021/nl303940z. PubMed DOI
Peiris E.; Hanauer S.; Le T.; Wang J.; Salavati-fard T.; Brasseur P.; Formo E. V.; Wang B.; Camargo P. H. C. Controlling Selectivity in Plasmonic Catalysis: Switching Reaction Pathway from Hydrogenation to Homocoupling Under Visible-Light Irradiation. Angew. Chemie, Int. Ed. 2023, 62, e20221639810.1002/anie.202216398. PubMed DOI
Saito K.; Tatsuma T. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light. Nano Lett. 2018, 18, 3209–3212. 10.1021/acs.nanolett.8b00929. PubMed DOI
Qiao T.; Bordoloi P.; Miyashita T.; Dionne J. A.; Tang M. L. Tuning the Chiral Growth of Plasmonic Bipyramids via the Wavelength and Polarization of Light. Nano Lett. 2024, 24, 2611–2618. 10.1021/acs.nanolett.3c04862. PubMed DOI
Ishida T.; Isawa A.; Kuroki S.; Kameoka Y.; Tatsuma T. All-Plasmonic-Metal Chiral Nanostructures Fabricated by Circularly Polarized Light. Appl. Phys. Lett. 2023, 123, 61111.10.1063/5.0155834. DOI
Lee S.; Fan C.; Movsesyan A.; Bürger J.; Wendisch F. J.; de S. Menezes L.; Maier S. A.; Ren H.; Liedl T.; Besteiro L. V.; et al. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew. Chemie Int. Ed. 2024, 63, e20231992010.1002/anie.202319920. PubMed DOI
Besteiro L. V.; Movsesyan A.; Ávalos-Ovando O.; Lee S.; Cortés E.; Correa-Duarte M. A.; Wang Z. M.; Govorov A. O. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. Nano Lett. 2021, 21, 10315–10324. 10.1021/acs.nanolett.1c03503. PubMed DOI PMC
Movsesyan A.; Muravitskaya A.; Besteiro L. V.; Santiago E. Y.; Ávalos-Ovando O.; Correa-Duarte M. A.; Wang Z.; Markovich G.; Govorov A. O. Creating Chiral Plasmonic Nanostructures Using Chiral Light in a Solution and on a Substrate: The Near-Field and Hot-Electron Routes. Adv. Opt. Mater. 2023, 11, 230001310.1002/adom.202300013. DOI
Ghalawat M.; Feferman D.; Besteiro L. V.; He W.; Movsesyan A.; Muravitskaya A.; Valdez J.; Moores A.; Wang Z.; Ma D.; et al. Chiral Symmetry Breaking in Colloidal Metal Nanoparticle Solutions by Circularly Polarized Light. ACS Nano 2024, 18, 28279–28291. 10.1021/acsnano.4c09349. PubMed DOI PMC
Saito K.; Nemoto Y.; Ishikawa Y. Circularly Polarized Light-Induced Chiral Growth of Achiral Plasmonic Nanoparticles Dispersed in a Solution. Nano Lett. 2024, 24, 12840–12848. 10.1021/acs.nanolett.4c03183. PubMed DOI
Hao C.; Xu L.; Ma W.; Wu X.; Wang L.; Kuang H.; Xu C. Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold-Silver Chiroplasmonic Nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822. 10.1002/adfm.201502429. DOI
Li W.; Coppens Z. J.; Besteiro L. V.; Wang W.; Govorov A. O.; Valentine J. Circularly Polarized Light Detection with Hot Electrons in Chiral Plasmonic Metamaterials. Nat. Commun. 2015, 6, 8379.10.1038/ncomms9379. PubMed DOI PMC
Fang Y.; Verre R.; Shao L.; Nordlander P.; Käll M. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Lett. 2016, 16, 5183–5190. 10.1021/acs.nanolett.6b02154. PubMed DOI
Liu T.; Besteiro L. V.; Liedl T.; Correa-Duarte M. A.; Wang Z.; Govorov A. O. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry. Nano Lett. 2019, 19, 1395–1407. 10.1021/acs.nanolett.8b05179. PubMed DOI
Khorashad L. K.; Besteiro L. V.; Correa-Duarte M. A.; Burger S.; Wang Z. M.; Govorov A. O. Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth. J. Am. Chem. Soc. 2020, 142, 4193–4205. 10.1021/jacs.9b11124. PubMed DOI
Negrín-Montecelo Y.; Movsesyan A.; Gao J.; Burger S.; Wang Z. M.; Nlate S.; Pouget E.; Oda R.; Comesaña-Hermo M.; O. Govorov A.; et al. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. J. Am. Chem. Soc. 2022, 144, 1663–1671. 10.1021/jacs.1c10526. PubMed DOI
McFadden C. F.; Cremer P. S.; Gellman A. J. Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces. Langmuir 1996, 12, 2483–2487. 10.1021/la950348l. DOI
Ahmadi A.; Attard G.; Feliu J.; Rodes A. Surface Reactivity at ′chiral’ Platinum Surfaces. Langmuir 1999, 15, 2420–2424. 10.1021/la9810915. DOI
Yutthalekha T.; Wattanakit C.; Lapeyre V.; Nokbin S.; Warakulwit C.; Limtrakul J.; Kuhn A. Asymmetric Synthesis Using Chiral-Encoded Metal. Nat. Commun. 2016, 7, 12678.10.1038/ncomms12678. PubMed DOI PMC
Butcha S.; Assavapanumat S.; Ittisanronnachai S.; Lapeyre V.; Wattanakit C.; Kuhn A. Nanoengineered Chiral Pt-Ir Alloys for High-Performance Enantioselective Electrosynthesis. Nat. Commun. 2021, 12, 1314.10.1038/s41467-021-21603-8. PubMed DOI PMC
Hendry E.; Carpy T.; Johnston J.; Popland M.; Mikhaylovskiy R. V.; Lapthorn A. J.; Kelly S. M.; Barron L. D.; Gadegaard N.; Kadodwala M. Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields. Nat. Nanotechnol. 2010, 5, 783–787. 10.1038/nnano.2010.209. PubMed DOI
Ma Y.; Cao Z.; Hao J.; Zhou J.; Yang Z.; Yang Y.; Wei J. Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules. J. Phys. Chem. C 2020, 124, 24306–24314. 10.1021/acs.jpcc.0c07046. DOI
Guselnikova O.; Elashnikov R.; Švorčík V.; Záruba K.; Jakubec M.; Žádný J.; Storch J.; Lyutakov O. Charge-Transfer Complexation: A Highly Effective Way towards Chiral Nanoparticles Endowed by Intrinsically Chiral Helicene and Enantioselective SERS Detection. Sensors Actuators B Chem. 2023, 394, 13433210.1016/j.snb.2023.134332. DOI
Huang X.; Chen Q.; Ma Y.; Huang C.; Zhi W.; Li J.; Zeng R.; Pi J.; Xu J.; Xu J.; et al. Chiral Au Nanostars for SERS Sensing of Enantiomers Discrimination, Multibacteria Recognition and Photothermal Antibacterial Application. Chem. Eng. J. 2024, 479, 14752810.1016/j.cej.2023.147528. DOI
Skvortsova A.; Han J. H.; Tosovska A.; Bainova P.; Kim R. M.; Burtsev V.; Erzina M.; Fitl P.; Urbanova M.; Svorcik V.; et al. Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces. ACS Appl. Mater. Interfaces 2024, 16, 48526–48535. 10.1021/acsami.4c09301. PubMed DOI PMC
Arabi M.; Ostovan A.; Wang Y.; Mei R.; Fu L.; Li J.; Wang X.; Chen L. Chiral Molecular Imprinting-Based SERS Detection Strategy for Absolute Enantiomeric Discrimination. Nat. Commun. 2022, 13, 5757.10.1038/s41467-022-33448-w. PubMed DOI PMC
Wei X.; Liu J.; Xia G. J.; Deng J.; Sun P.; Chruma J. J.; Wu W.; Yang C.; Wang Y. G.; Huang Z. Enantioselective Photoinduced Cyclodimerization of a Prochiral Anthracene Derivative Adsorbed on Helical Metal Nanostructures. Nat. Chem. 2020, 12, 551–559. 10.1038/s41557-020-0453-0. PubMed DOI
Im S. W.; Ahn H. Y.; Kim R. M.; Cho N. H.; Kim H.; Lim Y. C.; Lee H. E.; Nam K. T. Chiral Surface and Geometry of Metal Nanocrystals. Adv. Mater. 2020, 32, 190575810.1002/adma.201905758. PubMed DOI
Zhuo X.; Vila-Liarte D.; Wang S.; Jimenez de Aberasturi D.; Liz-Marzán L. M. Coated Chiral Plasmonic Nanorods with Enhanced Structural Stability. Chem. Mater. 2023, 35, 5689–5698. 10.1021/acs.chemmater.3c01267. DOI
Koh C. S. L.; Sim H. Y. F.; Leong S. X.; Boong S. K.; Chong C.; Ling X. Y. Plasmonic Nanoparticle-Metal–Organic Framework (NP–MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. ACS Mater. Lett. 2021, 3, 557–573. 10.1021/acsmaterialslett.1c00047. DOI
Zheng G.; Pastoriza-Santos I.; Pérez-Juste J.; Liz-Marzán L. M. Plasmonic Metal-Organic Frameworks. SmartMat 2021, 2, 446–465. 10.1002/smm2.1047. DOI
Kushnarenko A.; Zabelina A.; Guselnikova O.; Miliutina E.; Vokatá B.; Zabelin D.; Burtsev V.; Valiev R.; Kolska Z.; Paidar M.; et al. Merging Gold Plasmonic Nanoparticles and L-Proline inside a MOF for Plasmon-Induced Visible Light Chiral Organocatalysis at Low Temperature. Nanoscale 2024, 16, 5313–5322. 10.1039/D3NR04707E. PubMed DOI
Ahmadi A.; Attard G.; Feliu J.; Rodes A. Surface Reactivity at “chiral” Platinum Surfaces. Langmuir 1999, 15, 2420–2424. 10.1021/la9810915. DOI
Garcia-Vidal F. J.; Ciuti C.; Ebbesen T. W. Manipulating Matter by Strong Coupling to Vacuum Fields. Science 2021, 373, eabd033610.1126/science.abd0336. PubMed DOI
Thomas A.; Lethuillier-Karl L.; Nagarajan K.; Vergauwe R. M. A.; George J.; Chervy T.; Shalabney A.; Devaux E.; Genet C.; Moran J.; et al. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling. Science 2019, 363, 615–619. 10.1126/science.aau7742. PubMed DOI
Baranov D. G.; Schäfer C.; Gorkunov M. V. Toward Molecular Chiral Polaritons. ACS Photonics 2023, 10, 2440–2455. 10.1021/acsphotonics.2c02011. DOI
Riso R. R.; Grazioli L.; Ronca E.; Giovannini T.; Koch H. Strong Coupling in Chiral Cavities: Nonperturbative Framework for Enantiomer Discrimination. Phys. Rev. X 2023, 13, 31002.10.1103/PhysRevX.13.031002. DOI
Schäfer C.; Baranov D. G. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. J. Phys. Chem. Lett. 2023, 14, 3777–3784. 10.1021/acs.jpclett.3c00286. PubMed DOI PMC
Plum E.; Zheludev N. I. Chiral Mirrors. Appl. Phys. Lett. 2015, 106, 22190110.1063/1.4921969. DOI
Kang L.; Wang C.-Y.; Guo X.; Ni X.; Liu Z.; Werner D. H. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization. Nano Lett. 2020, 20, 2047–2055. 10.1021/acs.nanolett.0c00007. PubMed DOI
Semnani B.; Flannery J.; Al Maruf R.; Bajcsy M. Spin-Preserving Chiral Photonic Crystal Mirror. Light Sci. Appl. 2020, 9, 23.10.1038/s41377-020-0256-5. PubMed DOI PMC
Wu W.; Battie Y.; Genet C.; Ebbesen T. W.; Decher G.; Pauly M. Bottom-Up Tunable Broadband Semi-Reflective Chiral Mirrors. Adv. Opt. Mater. 2023, 11, 220283110.1002/adom.202202831. DOI