Plasmonic Chirality Meets Reactivity: Challenges and Opportunities

. 2025 Feb 20 ; 129 (7) : 3361-3373. [epub] 20250206

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40008194

The unique optoelectronic features associated with plasmonic nanomaterials in a broad energy range of the electromagnetic spectrum have the potential to overcome the current limitations in the development of heterogeneous photocatalytic systems with enantioselective capabilities. Recent advancements in creating plasmonic structures with strong chiroptical features have already enabled asymmetric recognition of molecular substrates or even polarization-sensitive chemical reactivity under visible and near-infrared irradiation. Nevertheless, important developments need to be achieved to attain real enantioselective reactivity solely driven by plasmons. This Perspective discusses current trends in the formation of chiral plasmonic materials and their application as photocatalysts to achieve stereocontrol in photochemical reactions. We summarize the challenges in this field and offer insight into future opportunities that could enhance the effectiveness of these innovative systems.

Zobrazit více v PubMed

Pasteur L. Mémoire Sur La Relation Quei Peut Exister Entre La Forme Cristalline et La Composition Chimique et Sur La Cause de La Polarisation Rotatoire. Comptes Rendus 1848, 26, 535–538.

Lee H. E.; Ahn H. Y.; Mun J.; Lee Y. Y.; Kim M.; Cho N. H.; Chang K.; Kim W. S.; Rho J.; Nam K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556, 360–364. 10.1038/s41586-018-0034-1. PubMed DOI

González-Rubio G.; Mosquera J.; Kumar V.; Pedrazo-Tardajos A.; Llombart P.; Solís D. M.; Lobato I.; Noya E. G.; Guerrero-Martínez A.; Taboada J. M.; et al. Micelle-Directed Chiral Seeded Growth on Anisotropic Gold Nanocrystals. Science 2020, 368, 1472–1477. 10.1126/science.aba0980. PubMed DOI

Ni B.; Mychinko M.; Gómez-Graña S.; Morales-Vidal J.; Obelleiro-Liz M.; Heyvaert W.; Vila-Liarte D.; Zhuo X.; Albrecht W.; Zheng G.; et al. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity. Adv. Mater. 2023, 35, 220829910.1002/adma.202208299. PubMed DOI

Kuzyk A.; Schreiber R.; Fan Z.; Pardatscher G.; Roller E. M.; Högele A.; Simmel F. C.; Govorov A. O.; Liedl T. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314. 10.1038/nature10889. PubMed DOI

Kim J. W.; Cho N. H.; Kim R. M.; Han J. H.; Choi S.; Namgung S. D.; Kim H.; Nam K. T. Magnetic Control of the Plasmonic Chirality in Gold Helicoids. Nano Lett. 2022, 22, 8181–8188. 10.1021/acs.nanolett.2c02661. PubMed DOI

Bainova P.; Joly J. P.; Urbanova M.; Votkina D.; Erzina M.; Vokata B.; Trelin A.; Fitl P.; Audran G.; Vanthuyne N.; et al. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catal. 2023, 13, 12859–12867. 10.1021/acscatal.3c02958. DOI

Tian Y.; Wu F.; Lv X.; Luan X.; Li F.; Xu G.; Niu W. Enantioselective Surface-Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards. Adv. Mater. 2024, 36, 240337310.1002/adma.202403373. PubMed DOI

Kim R. M.; Huh J. H.; Yoo S. J.; Kim T. G.; Kim C.; Kim H.; Han J. H.; Cho N. H.; Lim Y. C.; Im S. W.; et al. Enantioselective Sensing by Collective Circular Dichroism. Nature 2022, 612, 470–476. 10.1038/s41586-022-05353-1. PubMed DOI

Gansel J. K.; Thiel M.; Rill M. S.; Decker M.; Bade K.; Saile V.; von Freymann G.; Linden S.; Wegener M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science 2009, 325, 1513–1515. 10.1126/science.1177031. PubMed DOI

Noyori R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture 2001). Angew. Chemie Int. Ed. 2002, 41, 2008–2022. 10.1002/1521-3773(20020617)41:12<2008::AID-ANIE2008>3.0.CO;2-4. PubMed DOI

Heitbaum M.; Glorius F.; Escher I. Asymmetric Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2006, 45, 4732–4762. 10.1002/anie.200504212. PubMed DOI

Thomas J. M.; Raja R. Exploiting Nanospace for Asymmetric Catalysis: Confinement of Immobilized, Single-Site Chiral Catalysts Enhances Enantioselectivity. Acc. Chem. Res. 2008, 41, 708–720. 10.1021/ar700217y. PubMed DOI

Mallat T.; Orglmeister E.; Baiker A. Asymmetric Catalysis at Chiral Metal Surfaces. Chem. Rev. 2007, 107, 4863–4890. 10.1021/cr0683663. PubMed DOI

Marzo L.; Pagire S. K.; Reiser O.; König B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angewandte Chemie - International Edition. 2018, 57, 10034–10072. 10.1002/anie.201709766. PubMed DOI

Jiang C.; Chen W.; Zheng W. H.; Lu H. Advances in Asymmetric Visible-Light Photocatalysis, 2015–2019. Org. Biomol. Chem. 2019, 17, 8673–8689. 10.1039/C9OB01609K. PubMed DOI

Huo H.; Shen X.; Wang C.; Zhang L.; Röse P.; Chen L. A.; Harms K.; Marsch M.; Hilt G.; Meggers E. Asymmetric Photoredox Transition-Metal Catalysis Activated by Visible Light. Nature 2014, 515, 100–103. 10.1038/nature13892. PubMed DOI

Nicewicz D. A.; Macmillan D. W. C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008, 322, 77–80. 10.1126/science.1161976. PubMed DOI PMC

Guerrero-Martínez A.; Auguié B.; Alonso-Gómez J. L.; Džolič Z.; Gómez-Grańa S.; Žinić M.; Cid M. M.; Liz-Marzán L. M. Intense Optical Activity from Three-Dimensional Chiral Ordering of Plasmonic Nanoantennas. Angew. Chem., Int. Ed. 2011, 50, 5499–5503. 10.1002/anie.201007536. PubMed DOI

Fan Z.; Govorov A. O. Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies. Nano Lett. 2010, 10, 2580–2587. 10.1021/nl101231b. PubMed DOI

Song C.; Blaber M. G.; Zhao G.; Zhang P.; Fry H. C.; Schatz G. C.; Rosi N. L. Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Lett. 2013, 13, 3256–3261. 10.1021/nl4013776. PubMed DOI PMC

Cheng J.; Le Saux G.; Gao J.; Buffeteau T.; Battie Y.; Barois P.; Ponsinet V.; Delville M. H.; Ersen O.; Pouget E.; et al. GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano 2017, 11, 3806–3818. 10.1021/acsnano.6b08723. PubMed DOI

Gao J.; Wu W.; Lemaire V.; Carvalho A.; Nlate S.; Buffeteau T.; Oda R.; Battie Y.; Pauly M.; Pouget E. Tuning the Chiroptical Properties of Elongated Nano-Objects via Hierarchical Organization. ACS Nano 2020, 14, 4111–4121. 10.1021/acsnano.9b08823. PubMed DOI

Auguié B.; Alonso-Gómez J. L.; Guerrero-Martínez A.; Liz-Marzán L. M. Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851. 10.1021/jz200279x. PubMed DOI

Kuzyk A.; Schreiber R.; Zhang H.; Govorov A. O.; Liedl T.; Liu N. Reconfigurable 3D Plasmonic Metamolecules. Nat. Mater. 2014, 13, 862–866. 10.1038/nmat4031. PubMed DOI

Yin X.; Schäferling M.; Metzger B.; Giessen H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Lett. 2013, 13, 6238–6243. 10.1021/nl403705k. PubMed DOI

Zhao Y.; Belkin M. A.; Alù A. Twisted Optical Metamaterials for Planarized Ultrathin Broadband Circular Polarizers. Nat. Commun. 2012, 3, 870.10.1038/ncomms1877. PubMed DOI

Hu H.; Sekar S.; Wu W.; Battie Y.; Lemaire V.; Arteaga O.; Poulikakos L. V.; Norris D. J.; Giessen H.; Decher G.; et al. Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano 2021, 15, 13653–13661. 10.1021/acsnano.1c04804. PubMed DOI

Sekar S.; Lemaire V.; Hu H.; Decher G.; Pauly M. Anisotropic Optical and Conductive Properties of Oriented 1D-Nanoparticle Thin Films Made by Spray-Assisted Self-Assembly. Faraday Discuss. 2016, 191, 373–389. 10.1039/C6FD00017G. PubMed DOI

Hu H.; Pauly M.; Felix O.; Decher G. Spray-Assisted Alignment of Layer-by-Layer Assembled Silver Nanowires: A General Approach for the Preparation of Highly Anisotropic Nano-Composite Films. Nanoscale 2017, 9, 1307–1314. 10.1039/C6NR08045F. PubMed DOI

Wu W.; Battie Y.; Lemaire V.; Decher G.; Pauly M. Structure-Dependent Chiroptical Properties of Twisted Multilayered Silver Nanowire Assemblies. Nano Lett. 2021, 21, 8298–8303. 10.1021/acs.nanolett.1c02812. PubMed DOI

Carone A.; Mariani P.; Désert A.; Romanelli M.; Marcheselli J.; Garavelli M.; Corni S.; Rivalta I.; Parola S. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles. ACS Nano 2022, 16, 1089–1101. 10.1021/acsnano.1c08824. PubMed DOI

Ni B.; González-Rubio G.; Van Gordon K.; Bals S.; Kotov N. A.; Liz-Marzán L. M. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. Adv. Mater. 2024, 36, 241247310.1002/adma.202412473. PubMed DOI PMC

Xu L.; Wang X.; Wang W.; Sun M.; Choi W. J.; Kim J. Y.; Hao C.; Li S.; Qu A.; Lu M.; et al. Enantiomer-Dependent Immunological Response to Chiral Nanoparticles. Nature 2022, 601, 366–373. 10.1038/s41586-021-04243-2. PubMed DOI

Biswas A.; Wang T.; Biris A. S. Single Metal Nanoparticle Spectroscopy: Optical Characterization of Individual Nanosystems for Biomedical Applications. Nanoscale 2010, 2, 1560–1572. 10.1039/c0nr00133c. PubMed DOI

Sa J.; Hu N.; Heyvaert W.; Van Gordon K.; Li H.; Wang L.; Bals S.; Liz-Marzán L. M.; Ni W. Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods. Chem. Mater. 2023, 35, 6782–6789. 10.1021/acs.chemmater.3c01044. DOI

Smith K. W.; Zhao H.; Zhang H.; Sánchez-Iglesias A.; Grzelczak M.; Wang Y.; Chang W.-S.; Nordlander P.; Liz-Marzán L. M.; Link S. Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. ACS Nano 2016, 10, 6180–6188. 10.1021/acsnano.6b02194. PubMed DOI

Li H.; Van Gordon K.; Zhang H.; Wang L.; Hu N.; Liz-Marzán L. M.; Ni W. Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods. ACS Nano 2025, 19, 3635.10.1021/acsnano.4c14015. PubMed DOI

Goerlitzer E. S. A.; Puri A. S.; Moses J. J.; Poulikakos L. V.; Vogel N. The Beginner’s Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large-Area Substrates. Adv. Opt. Mater. 2021, 9, 210037810.1002/adom.202100378. DOI

Wang Z.; Cheng F.; Winsor T.; Liu Y. Optical Chiral Metamaterials: A Review of the Fundamentals, Fabrication Methods and Applications. Nanotechnology 2016, 27, 41200110.1088/0957-4484/27/41/412001. PubMed DOI

Khorasaninejad M.; Chen W. T.; Zhu A. Y.; Oh J.; Devlin R. C.; Rousso D.; Capasso F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595–4600. 10.1021/acs.nanolett.6b01897. PubMed DOI

Hao C.; Xu L.; Kuang H.; Xu C. Artificial Chiral Probes and Bioapplications. Adv. Mater. 2020, 32, 180207510.1002/adma.201802075. PubMed DOI

Linic S.; Chavez S.; Elias R. Flow and Extraction of Energy and Charge Carriers in Hybrid Plasmonic Nanostructures. Nat. Mater. 2021, 20, 916–924. 10.1038/s41563-020-00858-4. PubMed DOI

Gargiulo J.; Berté R.; Li Y.; Maier S. A.; Cortés E. From Optical to Chemical Hot Spots in Plasmonics. Acc. Chem. Res. 2019, 52, 2525–2535. 10.1021/acs.accounts.9b00234. PubMed DOI

Brissaud C.; Besteiro L. V.; Piquemal J. Y.; Comesaña-Hermo M. Plasmonics: A Versatile Toolbox for Heterogeneous Photocatalysis. Sol. RRL 2023, 7, 230019510.1002/solr.202300195. DOI

Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247. 10.1021/nl303940z. PubMed DOI

Peiris E.; Hanauer S.; Le T.; Wang J.; Salavati-fard T.; Brasseur P.; Formo E. V.; Wang B.; Camargo P. H. C. Controlling Selectivity in Plasmonic Catalysis: Switching Reaction Pathway from Hydrogenation to Homocoupling Under Visible-Light Irradiation. Angew. Chemie, Int. Ed. 2023, 62, e20221639810.1002/anie.202216398. PubMed DOI

Saito K.; Tatsuma T. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light. Nano Lett. 2018, 18, 3209–3212. 10.1021/acs.nanolett.8b00929. PubMed DOI

Qiao T.; Bordoloi P.; Miyashita T.; Dionne J. A.; Tang M. L. Tuning the Chiral Growth of Plasmonic Bipyramids via the Wavelength and Polarization of Light. Nano Lett. 2024, 24, 2611–2618. 10.1021/acs.nanolett.3c04862. PubMed DOI

Ishida T.; Isawa A.; Kuroki S.; Kameoka Y.; Tatsuma T. All-Plasmonic-Metal Chiral Nanostructures Fabricated by Circularly Polarized Light. Appl. Phys. Lett. 2023, 123, 61111.10.1063/5.0155834. DOI

Lee S.; Fan C.; Movsesyan A.; Bürger J.; Wendisch F. J.; de S. Menezes L.; Maier S. A.; Ren H.; Liedl T.; Besteiro L. V.; et al. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew. Chemie Int. Ed. 2024, 63, e20231992010.1002/anie.202319920. PubMed DOI

Besteiro L. V.; Movsesyan A.; Ávalos-Ovando O.; Lee S.; Cortés E.; Correa-Duarte M. A.; Wang Z. M.; Govorov A. O. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. Nano Lett. 2021, 21, 10315–10324. 10.1021/acs.nanolett.1c03503. PubMed DOI PMC

Movsesyan A.; Muravitskaya A.; Besteiro L. V.; Santiago E. Y.; Ávalos-Ovando O.; Correa-Duarte M. A.; Wang Z.; Markovich G.; Govorov A. O. Creating Chiral Plasmonic Nanostructures Using Chiral Light in a Solution and on a Substrate: The Near-Field and Hot-Electron Routes. Adv. Opt. Mater. 2023, 11, 230001310.1002/adom.202300013. DOI

Ghalawat M.; Feferman D.; Besteiro L. V.; He W.; Movsesyan A.; Muravitskaya A.; Valdez J.; Moores A.; Wang Z.; Ma D.; et al. Chiral Symmetry Breaking in Colloidal Metal Nanoparticle Solutions by Circularly Polarized Light. ACS Nano 2024, 18, 28279–28291. 10.1021/acsnano.4c09349. PubMed DOI PMC

Saito K.; Nemoto Y.; Ishikawa Y. Circularly Polarized Light-Induced Chiral Growth of Achiral Plasmonic Nanoparticles Dispersed in a Solution. Nano Lett. 2024, 24, 12840–12848. 10.1021/acs.nanolett.4c03183. PubMed DOI

Hao C.; Xu L.; Ma W.; Wu X.; Wang L.; Kuang H.; Xu C. Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold-Silver Chiroplasmonic Nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822. 10.1002/adfm.201502429. DOI

Li W.; Coppens Z. J.; Besteiro L. V.; Wang W.; Govorov A. O.; Valentine J. Circularly Polarized Light Detection with Hot Electrons in Chiral Plasmonic Metamaterials. Nat. Commun. 2015, 6, 8379.10.1038/ncomms9379. PubMed DOI PMC

Fang Y.; Verre R.; Shao L.; Nordlander P.; Käll M. Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Lett. 2016, 16, 5183–5190. 10.1021/acs.nanolett.6b02154. PubMed DOI

Liu T.; Besteiro L. V.; Liedl T.; Correa-Duarte M. A.; Wang Z.; Govorov A. O. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry. Nano Lett. 2019, 19, 1395–1407. 10.1021/acs.nanolett.8b05179. PubMed DOI

Khorashad L. K.; Besteiro L. V.; Correa-Duarte M. A.; Burger S.; Wang Z. M.; Govorov A. O. Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth. J. Am. Chem. Soc. 2020, 142, 4193–4205. 10.1021/jacs.9b11124. PubMed DOI

Negrín-Montecelo Y.; Movsesyan A.; Gao J.; Burger S.; Wang Z. M.; Nlate S.; Pouget E.; Oda R.; Comesaña-Hermo M.; O. Govorov A.; et al. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. J. Am. Chem. Soc. 2022, 144, 1663–1671. 10.1021/jacs.1c10526. PubMed DOI

McFadden C. F.; Cremer P. S.; Gellman A. J. Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces. Langmuir 1996, 12, 2483–2487. 10.1021/la950348l. DOI

Ahmadi A.; Attard G.; Feliu J.; Rodes A. Surface Reactivity at ′chiral’ Platinum Surfaces. Langmuir 1999, 15, 2420–2424. 10.1021/la9810915. DOI

Yutthalekha T.; Wattanakit C.; Lapeyre V.; Nokbin S.; Warakulwit C.; Limtrakul J.; Kuhn A. Asymmetric Synthesis Using Chiral-Encoded Metal. Nat. Commun. 2016, 7, 12678.10.1038/ncomms12678. PubMed DOI PMC

Butcha S.; Assavapanumat S.; Ittisanronnachai S.; Lapeyre V.; Wattanakit C.; Kuhn A. Nanoengineered Chiral Pt-Ir Alloys for High-Performance Enantioselective Electrosynthesis. Nat. Commun. 2021, 12, 1314.10.1038/s41467-021-21603-8. PubMed DOI PMC

Hendry E.; Carpy T.; Johnston J.; Popland M.; Mikhaylovskiy R. V.; Lapthorn A. J.; Kelly S. M.; Barron L. D.; Gadegaard N.; Kadodwala M. Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields. Nat. Nanotechnol. 2010, 5, 783–787. 10.1038/nnano.2010.209. PubMed DOI

Ma Y.; Cao Z.; Hao J.; Zhou J.; Yang Z.; Yang Y.; Wei J. Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules. J. Phys. Chem. C 2020, 124, 24306–24314. 10.1021/acs.jpcc.0c07046. DOI

Guselnikova O.; Elashnikov R.; Švorčík V.; Záruba K.; Jakubec M.; Žádný J.; Storch J.; Lyutakov O. Charge-Transfer Complexation: A Highly Effective Way towards Chiral Nanoparticles Endowed by Intrinsically Chiral Helicene and Enantioselective SERS Detection. Sensors Actuators B Chem. 2023, 394, 13433210.1016/j.snb.2023.134332. DOI

Huang X.; Chen Q.; Ma Y.; Huang C.; Zhi W.; Li J.; Zeng R.; Pi J.; Xu J.; Xu J.; et al. Chiral Au Nanostars for SERS Sensing of Enantiomers Discrimination, Multibacteria Recognition and Photothermal Antibacterial Application. Chem. Eng. J. 2024, 479, 14752810.1016/j.cej.2023.147528. DOI

Skvortsova A.; Han J. H.; Tosovska A.; Bainova P.; Kim R. M.; Burtsev V.; Erzina M.; Fitl P.; Urbanova M.; Svorcik V.; et al. Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces. ACS Appl. Mater. Interfaces 2024, 16, 48526–48535. 10.1021/acsami.4c09301. PubMed DOI PMC

Arabi M.; Ostovan A.; Wang Y.; Mei R.; Fu L.; Li J.; Wang X.; Chen L. Chiral Molecular Imprinting-Based SERS Detection Strategy for Absolute Enantiomeric Discrimination. Nat. Commun. 2022, 13, 5757.10.1038/s41467-022-33448-w. PubMed DOI PMC

Wei X.; Liu J.; Xia G. J.; Deng J.; Sun P.; Chruma J. J.; Wu W.; Yang C.; Wang Y. G.; Huang Z. Enantioselective Photoinduced Cyclodimerization of a Prochiral Anthracene Derivative Adsorbed on Helical Metal Nanostructures. Nat. Chem. 2020, 12, 551–559. 10.1038/s41557-020-0453-0. PubMed DOI

Im S. W.; Ahn H. Y.; Kim R. M.; Cho N. H.; Kim H.; Lim Y. C.; Lee H. E.; Nam K. T. Chiral Surface and Geometry of Metal Nanocrystals. Adv. Mater. 2020, 32, 190575810.1002/adma.201905758. PubMed DOI

Zhuo X.; Vila-Liarte D.; Wang S.; Jimenez de Aberasturi D.; Liz-Marzán L. M. Coated Chiral Plasmonic Nanorods with Enhanced Structural Stability. Chem. Mater. 2023, 35, 5689–5698. 10.1021/acs.chemmater.3c01267. DOI

Koh C. S. L.; Sim H. Y. F.; Leong S. X.; Boong S. K.; Chong C.; Ling X. Y. Plasmonic Nanoparticle-Metal–Organic Framework (NP–MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. ACS Mater. Lett. 2021, 3, 557–573. 10.1021/acsmaterialslett.1c00047. DOI

Zheng G.; Pastoriza-Santos I.; Pérez-Juste J.; Liz-Marzán L. M. Plasmonic Metal-Organic Frameworks. SmartMat 2021, 2, 446–465. 10.1002/smm2.1047. DOI

Kushnarenko A.; Zabelina A.; Guselnikova O.; Miliutina E.; Vokatá B.; Zabelin D.; Burtsev V.; Valiev R.; Kolska Z.; Paidar M.; et al. Merging Gold Plasmonic Nanoparticles and L-Proline inside a MOF for Plasmon-Induced Visible Light Chiral Organocatalysis at Low Temperature. Nanoscale 2024, 16, 5313–5322. 10.1039/D3NR04707E. PubMed DOI

Ahmadi A.; Attard G.; Feliu J.; Rodes A. Surface Reactivity at “chiral” Platinum Surfaces. Langmuir 1999, 15, 2420–2424. 10.1021/la9810915. DOI

Garcia-Vidal F. J.; Ciuti C.; Ebbesen T. W. Manipulating Matter by Strong Coupling to Vacuum Fields. Science 2021, 373, eabd033610.1126/science.abd0336. PubMed DOI

Thomas A.; Lethuillier-Karl L.; Nagarajan K.; Vergauwe R. M. A.; George J.; Chervy T.; Shalabney A.; Devaux E.; Genet C.; Moran J.; et al. Tilting a Ground-State Reactivity Landscape by Vibrational Strong Coupling. Science 2019, 363, 615–619. 10.1126/science.aau7742. PubMed DOI

Baranov D. G.; Schäfer C.; Gorkunov M. V. Toward Molecular Chiral Polaritons. ACS Photonics 2023, 10, 2440–2455. 10.1021/acsphotonics.2c02011. DOI

Riso R. R.; Grazioli L.; Ronca E.; Giovannini T.; Koch H. Strong Coupling in Chiral Cavities: Nonperturbative Framework for Enantiomer Discrimination. Phys. Rev. X 2023, 13, 31002.10.1103/PhysRevX.13.031002. DOI

Schäfer C.; Baranov D. G. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. J. Phys. Chem. Lett. 2023, 14, 3777–3784. 10.1021/acs.jpclett.3c00286. PubMed DOI PMC

Plum E.; Zheludev N. I. Chiral Mirrors. Appl. Phys. Lett. 2015, 106, 22190110.1063/1.4921969. DOI

Kang L.; Wang C.-Y.; Guo X.; Ni X.; Liu Z.; Werner D. H. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization. Nano Lett. 2020, 20, 2047–2055. 10.1021/acs.nanolett.0c00007. PubMed DOI

Semnani B.; Flannery J.; Al Maruf R.; Bajcsy M. Spin-Preserving Chiral Photonic Crystal Mirror. Light Sci. Appl. 2020, 9, 23.10.1038/s41377-020-0256-5. PubMed DOI PMC

Wu W.; Battie Y.; Genet C.; Ebbesen T. W.; Decher G.; Pauly M. Bottom-Up Tunable Broadband Semi-Reflective Chiral Mirrors. Adv. Opt. Mater. 2023, 11, 220283110.1002/adom.202202831. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...