Activating agent-driven hierarchical nano-porous structure in mustard oil-derived carbon soot for supercapacitive application

. 2025 Aug ; 32 (37) : 21975-21994. [epub] 20240903

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39225927
Odkazy

PubMed 39225927
DOI 10.1007/s11356-024-34798-2
PII: 10.1007/s11356-024-34798-2
Knihovny.cz E-zdroje

In the present paper, activated nano-carbon soot is derived from atmospheric flame combustion of thymol-mustard oil followed by activation with potassium hydroxide (KOH) to produce micro- and mesoporous interiors. Different forms of activated nano-carbon soot are produced by using different weight percentage ratios 1:1, 1:3, and 1:5 of precursor carbon soot (CS) to KOH and named CS11, CS13, and CS15, respectively. An increase in specific surface area and average pore volume is observed with an increase in the amount of KOH with the hierarchical network having balanced micropores as well as mesopores in CS15. The electrochemical performance of prepared activated nano-carbon soot is further investigated by the fabrication of a symmetric electric double-layer solid-state supercapacitor (SC) device utilizing a 6 M KOH electrolyte. The CS15-based device displays the highest specific capacitance (Csp) of 226.20 F/g at a current density of 0.5 A/g with energy density (Ed) 31.42 Wh/kg at a power density (Pd) of 250 W/kg. The Csp, Ed, and Pd are found to be higher than activated nano-carbon soot reported in the literature. Further, three-coin cells are fabricated using CS15 which are tested in series combination with yellow light emitting diode (LED) and are found to be able to glow LED for ~ 5 min 25 s.

Zobrazit více v PubMed

Adnan SM, Shoeb M, Ansari MZ, Mashkoor F, Mobin M, Zaidi S, Jeong C (2023) Fabrication of NiO–CuO decorated polyaniline (PANI/NiO–CuO) nanocomposite based symmetric supercapacitor device for high-energy density performance with wide potential window in aqueous electrolyte. Inorg Chem Commun 157:111265. https://doi.org/10.1016/j.inoche.2023.111265 DOI

Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Sajid S, Moniruzzaman M, Obaidat IM (2023) Carbon Materials as a conductive skeleton for supercapacitor electrode applications: a review. Nanomaterials 13(6):1049. https://doi.org/10.3390/nano13061049 DOI

Anwer AH, Shoeb M, Mashkoor F, Ali A, Kareem S, Ansari MZ, Jeong C (2023) Simultaneous reduction of carbon dioxide and energy harvesting using RGO-based SiO2-TiO2 nanocomposite for supercapacitor and microbial electrosynthesis. Appl Catal B 339:123091. https://doi.org/10.1016/j.apcatb.2023.123091 DOI

Bi J, Yan Z, Hao L, Elnaggar AY, El-Bahy SM, Zhang F, Guo Z (2023) Improving water resistance and mechanical properties of waterborne acrylic resin modified by octafluoropentyl methacrylate. J Mater Sci 58(3):1452–1464. https://doi.org/10.1007/s10853-022-07956-5 DOI

Chen W, Gong M, Li K, Xia M, Chen Z, Xiao H, Chen H (2020) Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl Energy 278:115730. https://doi.org/10.1016/j.apenergy.2020.115730 DOI

Epp J (2016) X-ray diffraction (XRD) techniques for materials characterization. In: Materials Characterization using Nondestructive Evaluation (NDE) Methods. Woodhead Publishing, 81–124. https://doi.org/10.1016/B978-0-08-100040-3.00004-3

Fatimah S, Ragadhita R, Al Husaeni DF, Nandiyanto ABD (2022) How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN J Sci Eng 2(1):65–76. https://doi.org/10.17509/ijost.v6ix DOI

Hassan M, Wang M, Hussain S, Zhang X, Lei S, Jin M, Liu G (2022) Synchronized integration of iron/cobalt dual-metal in nitrogen-doped carbon hollow spheres for enriched supercapacitive and oxygen reduction reaction performances. J Energy Storage 56:105895. https://doi.org/10.1016/j.est.2022.105895 DOI

Hsiao CH, Gupta S, Lee CY, Tai NH (2023) Effects of physical and chemical activations on the performance of biochar applied in supercapacitors. Appl Surf Sci 610:155560. https://doi.org/10.1016/j.apsusc.2022.155560 DOI

Hussain S, Yang X, Aslam MK, Shaheen A, Javed MS, Aslam N, Qiao G (2020a) Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem Eng J 391:123595. https://doi.org/10.1016/j.cej.2019.123595 DOI

Hussain S, Javed MS, Asim S, Shaheen A, Khan AJ, Abbas Y, Yun S (2020b) Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int 46(5):6406–6412. https://doi.org/10.1016/j.ceramint.2019.11.118 DOI

Karthikeyan S, Narenthiran B, Sivanantham A, Bhatlu LD, Maridurai T (2021) Supercapacitor: evolution and review. Materials Today: Proceedings 46:3984–3988. https://doi.org/10.1016/j.matpr.2021.02.526 DOI

Kumar KV, Islam A, Kiran PS, Pandit N, Kumar R, Indupuri S, Keshri AK (2023) Exfoliation of graphite to turbostratic graphene. 2D Mater 11(1):015022. https://doi.org/10.1088/2053-1583/ad1675 DOI

Liang K, Chen Y, Wang S, Wang D, Wang W, Jia S, Chen Z (2023) Peanut shell waste derived porous carbon for high-performance supercapacitors. J Energy Storage 70:107947. https://doi.org/10.1016/j.est.2023.107947 DOI

Manoj B, Kunjomana AG (2012) Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int J Electrochem Sci 7(4):3127–3134. https://doi.org/10.1016/S1452-3981(23)13940-X DOI

Mashkoor F, Adnan SM, Shoeb M, Jeong C (2024) Waste-to-wealth strategy: Ti DOI

Merchan W (2022) Synthesis of carbonaceous hydrophobic layers through a flame deposition process. Appl Sci 12(5):2427. https://doi.org/10.3390/app12052427 DOI

Misran E, Sarah M, Dina SF, Harahap SAA, Nazar A (2020) Activated carbon preparation from bagasse and banana stem at various impregnation ratio. J Phys: Conf Ser 1542(1):012068. https://doi.org/10.1088/1742-6596/1542/1/012068 DOI

Moseenkov SI, Kuznetsov VL, Zolotarev NA, Kolesov BA, Prosvirin IP, Ishchenko AV, Zavorin AV (2023) Investigation of amorphous carbon in nanostructured carbon materials (a comparative study by TEM, XPS, Raman spectroscopy and XRD). Materials 16(3):1112. https://doi.org/10.3390/ma16031112 DOI

Nisar S, Lanza Junior U, Azeem MW (2019) Isolation of bioactive components of Carom: a review. Int J Chem Biochem Sci 16:23–27. https://doi.org/10.5555/20203150157 DOI

Oyedotun KO, Ighalo JO, Amaku JF, Olisah C, Adeola AO, Iwuozor KO, Adegoke KA (2023) Advances in supercapacitor development: materials, processes, and applications. J Electron Mater 52(1):96–129. https://doi.org/10.1007/s11664-022-09987-9 DOI

Qin Z, Ye Y, Zhang D, He J, Zhou J, Cai J (2023) One/two-step contribution to prepare hierarchical porous carbon derived from rice husk for supercapacitor electrode materials. ACS Omega 8(5):5088–5096. https://doi.org/10.1021/acsomega.2c07932 DOI

Raj CJ, Kim BC, Cho BB, Cho WJ, Kim SJ, Park SY, Yu KH (2016) Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bull Mater Sci 39:241–248. https://doi.org/10.1007/s12034-015-1113-7 DOI

Rajasekaran SJ, Grace AN, Jacob G, Alodhayb A, Pandiaraj S, Raghavan V (2023) Investigation of different aqueous electrolytes for biomass-derived activated carbon-based supercapacitors. Catalysts 13(2):286. https://doi.org/10.3390/catal13020286 DOI

Rajeevan S, John S, Ponnamma D, George SC (2022) Fabrication of high-performance symmetric supercapacitor of graphene electrodes by tuning their electrochemical properties. J Energy Storage 56:105919. https://doi.org/10.1016/j.est.2022.105919 DOI

Ramesh T, Vedarajan R, Rajalakshmi N, Reddy LRG (2020) Dynamic electrochemical impedance spectroscopy as a rapid screening tool for supercapacitor electrode materials. J Mater Sci: Mater Electron 31:1681–1690. https://doi.org/10.1007/s10854-019-02686-y DOI

Ren Y, Yan Y, Wang Y, Zhang H, Li X (2021) Thermally treated candle soot as a novel catalyst for hydrogen peroxide in-situ production enhancement in the bio-electro-Fenton system. Chemosphere 262:127839. https://doi.org/10.1016/j.chemosphere.2020.127839 DOI

Şahin ME, Blaabjerg F, Sangwongwanich A (2022) A comprehensive review on supercapacitor applications and developments. Energies 15(3):674. https://doi.org/10.3390/en15030674 DOI

Sahu V, Marichi RB, Singh G, Sharma RK (2017a) Hierarchical polyaniline spikes over vegetable oil derived carbon aerogel for solid-state symmetric/asymmetric supercapacitor. Electrochim Acta 240:146–154. https://doi.org/10.1016/j.electacta.2017.04.058 DOI

Sahu V, Mishra M, Gupta G, Singh G, Sharma RK (2017b) Turning hazardous diesel soot into high performance carbon/MnO2 supercapacitive energy storage material. ACS Sustain Chem Eng 5(1):450–459. https://doi.org/10.1021/acssuschemeng.6b01788 DOI

Sarno M (2020) Nanotechnology in energy storage: the supercapacitors. Stud Surf Sci Catal 179:431–458. https://doi.org/10.1016/B978-0-444-64337-7.00022-7 DOI

Shabeeba P, Thayyil MS, Pillai MP, Soufeena PP, Niveditha CV (2018) Electrochemical investigation of activated carbon electrode supercapacitors. Russ J Electrochem 54:302–308. https://doi.org/10.1134/S1023193517120096 DOI

Shoeb M, Mashkoor F, Jeong H, Anwer AH, Zhu S, Ansari MZ, Jeong C (2023) VARTM-assisted high-performance solid-state structural supercapacitor device based on the synergistic effect of Ni(OH) DOI

Shoeb M, Mashkoor F, Khan JA, Khan MN, Gondal MA, Jeong C (2024) Effect of mass loading and fabrication of VARTM-based high-performance solid-state supercapacitor device with MXene-NiCo DOI

Shoeb M, Mashkoor F, Khan MN, Kim BJ, Jeong C (2025) Waste to energy strategy: graphene-supported Au-Ag DOI

Singh A, Ojha AK (2023) Orange peel derived activated carbon for supercapacitor electrode material. J Mater Sci: Mater Electron 34(11):1003. https://doi.org/10.1007/s10854-023-10418-6 DOI

Sunil V, Pal B, Misnon II, Jose R (2021) Characterization of supercapacitive charge storage device using electrochemical impedance spectroscopy. Mater Today: Proc 46:1588–1594. https://doi.org/10.1016/j.matpr.2020.07.248 DOI

Supiyeva Z, Pan X, Abbas Q (2023) The critical role of nanostructured carbon pores in supercapacitors. Curr Opin Electrochem 39:101249. https://doi.org/10.1016/j.coelec.2023.101249 DOI

Tyagi A, Mishra K, Shukla VK (2022a) Structural and electrochemical properties of koh-activated carbon soot derived from sinapis alba (yellow mustard oil) for edlc application. J Electron Mater 51(10):5670–5685. https://doi.org/10.1007/s11664-022-09832-z DOI

Tyagi A, Mishra K, Shukla VK (2022b) Structural and electrochemical investigations on impregnated carbon soot derived by flame synthesis method. MRS Advances 7(27):570–574. https://doi.org/10.1557/s43580-022-00273-8 DOI

Tyagi A, Mishra K, Sharma SK, Shukla VK (2022c) Performance studies of an electric double-layer capacitor (EDLC) fabricated using edible oil-derived activated carbon. J Mater Sci: Mater Electron 33(11):8920–8934. https://doi.org/10.1007/s10854-021-06978-0 DOI

Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279. https://doi.org/10.1016/j.chemosphere.2020.127279 DOI

Yadav N, Yadav N, Hashmi SA (2020) Ionic liquid incorporated, redox-active blend polymer electrolyte for high energy density quasi-solid-state carbon supercapacitor. J Power Sources 451:227771. https://doi.org/10.1016/j.jpowsour.2020.227771 DOI

Yang P, Zheng D, Zhu P, Jiang F, Bi X (2023) Biocarbon with large specific surface area and tunable pore structure from binary molten salt templating for supercapacitor applications. Chem Eng J 472:144785. https://doi.org/10.1016/j.cej.2023.144785 DOI

Yuan Y, Fang L, Gu M, Lv Z, Lv C, Ullah N, Hussain S (2023) Wide facets ZnCo DOI

Zhang D, Zhang Y, Liu H, Xu Y, Wu J, Li P (2023) Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes. J Phys Chem Solids 178:111318. https://doi.org/10.1016/j.jpcs.2023.111318 DOI

Zhou G, Xu C, Cheng W, Zhang Q, Nie W (2015) Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment. J Anal Methods Chem 2015(1):467242. https://doi.org/10.1155/2015/467242 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...