Phosphorylation of cytosolic hPGK1 affects protein stability and ligand binding: implications for its subcellular targeting in cancer

. 2024 Nov ; 291 (21) : 4775-4795. [epub] 20240906

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39240559

Grantová podpora
LM2023042 CIISB, Instruct-CZ Centre
RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
B-BIO-84-UGR20 ERDF/Counselling of Economic transformation, Industry, Knowledge and Universities
P18-RT-2413 ERDF/Counselling of Economic transformation, Industry, Knowledge and Universities
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund-Project "UP CIISB"
823839 EPIC-XS H2020

Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen-deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.

Zobrazit více v PubMed

Rojas‐Pirela M, Andrade‐Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL & Quiñones W (2020) Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 10, 200302.

Chiarelli LR, Morera SM, Bianchi P, Fermo E, Zanella A, Galizzi A & Valentini G (2012) Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS One 7, e32065.

Young TA, Skordalakes E & Marqusee S (2007) Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability. J Mol Biol 368, 1438–1447.

Valentini G, Maggi M & Pey A (2013) Protein stability, folding and misfolding in human PGK1 deficiency. Biomolecules 3, 1030–1052.

Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Ann Rev Microbiol 41, 127–151.

Krishnan P, Gullen EA, Lam W, Dutschman GE, Grill SP & Cheng Y‐C (2003) Novel role of 3‐phosphoglycerate kinase, a glycolytic enzyme, in the activation of L‐nucleoside analogs, a new class of anticancer and antiviral agents. J Biol Chem 278, 36726–36732.

Mathé C & Gosselin G (2006) L‐nucleoside enantiomers as antivirals drugs: a mini‐review. Antivir Res 71, 276–281.

Varga A, Lionne C & Roy B (2016) Intracellular metabolism of nucleoside/nucleotide analogues: a bottleneck to reach active drugs on HIV reverse transcriptase. Curr Drug Metab 17, 237–252.

Varga A, Chaloin L, Sági G, Sendula R, Gráczer E, Liliom K, Závodszky P, Lionne C & Vas M (2011) Nucleotide promiscuity of 3‐phosphoglycerate kinase is in focus: implications for the design of better anti‐HIV analogues. Mol BioSyst 7, 1863–1873.

Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang Y, Lee J‐H, Hawke D, Wang Y, Xia Y et al. (2017) Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol Cell 65, 917–931.e6.

Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T et al. (2016) Mitochondria‐translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 61, 705–719.

Myre MA & O'Day DH (2004) Calmodulin binds to and inhibits the activity of phosphoglycerate kinase. Biochim Biophys Acta 1693, 177–183.

Guin D & Gruebele M (2020) Chaperones Hsc70 and Hsp70 bind to the protein PGK differently inside living cells. J Phys Chem B 124, 3629–3635.

Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, Huang B‐J, Fang J, Qian C‐N, Jiang T et al. (2018) Nuclear PGK1 alleviates ADP‐dependent inhibition of CDC7 to promote DNA replication. Mol Cell 72, 650–660.e8.

Ogino T, Iwama M, Kinouchi J, Shibagaki Y, Tsukamoto T & Mizumoto K (1999) Involvement of a cellular glycolytic enzyme, phosphoglycerate kinase, in Sendai virus transcription. J Biol Chem 274, 35999–36008.

Popanda O, Fox G & Thielmann HW (1998) Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3‐phosphoglycerate kinase. Biochim Biophys Acta 1397, 102–117.

Pey AL, Maggi M & Valentini G (2014) Insights into human phosphoglycerate kinase 1 deficiency as a conformational disease from biochemical, biophysical, and in vitro expression analyses. J Inherit Metab Dis 37, 909–916.

Pey AL, Mesa‐Torres N, Chiarelli LR & Valentini G (2013) Structural and energetic basis of protein kinetic destabilization in human phosphoglycerate kinase 1 deficiency. Biochemistry 52, 1160–1170.

Sotiriou E, Greene P, Krishna S, Hirano M & DiMauro S (2010) Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve 41, 707–710.

Beutler E (2007) PGK deficiency. Br J Haematol 136, 3–11.

Szilágyi AN, Ghosh M, Garman E & Vas M (2001) A 1.8 a resolution structure of pig muscle 3‐phosphoglycerate kinase with bound MgADP and 3‐phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure. J Mol Biol 306, 499–511.

Vas M, Varga A & Gráczer E (2010) Insight into the mechanism of domain movements and their role in enzyme function: example of 3‐phosphoglycerate kinase. Curr Protein Pept Sci 11, 118–147.

Pacheco‐García JL, Loginov DS, Naganathan AN, Vankova P, Cano‐Muñoz M, Man P & Pey AL (2022) Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N‐terminal domain hydrophobic core. Sci Rep 12, 17200.

Andreu I, Granero‐Moya I, Garcia‐Manyes S & Roca‐Cusachs P (2022) Understanding the role of mechanics in nucleocytoplasmic transport. APL Bioeng 6, 020901.

Sato TK, Kawano S & Endo T (2019) Role of the membrane potential in mitochondrial protein unfolding and import. Sci Rep 9, 7637.

Infante E, Stannard A, Board SJ, Rico‐Lastres P, Rostkova E, Beedle AEM, Lezamiz A, Wang YJ, Gulaidi Breen S, Panagaki F et al. (2019) The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat Phys 15, 973–981.

Wilcox AJ, Choy J, Bustamante C & Matouschek A (2005) Effect of protein structure on mitochondrial import. Proc Natl Acad Sci USA 102, 15435–15440.

Matouschek A, Azem A, Ratliff K, Glick BS, Schmid K & Schatz G (1997) Active unfolding of precursor proteins during mitochondrial protein import. EMBO J 16, 6727–6736.

Varga A, Szabó J, Flachner B, Gugolya Z, Vonderviszt F, Závodszky P & Vas M (2009) Thermodynamic analysis of substrate induced domain closure of 3‐phosphoglycerate kinase. FEBS Lett 583, 3660–3664.

Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR & Naganathan AN (2022) Structural‐energetic basis for coupling between equilibrium fluctuations and phosphorylation in a protein native ensemble. ACS Cent Sci 8, 282–293.

Ferreiro DU, Komives EA & Wolynes PG (2014) Frustration in biomolecules. Q Rev Biophys 47, 285–363.

Freiberger MI, Guzovsky AB, Wolynes PG, Parra RG & Ferreiro DU (2019) Local frustration around enzyme active sites. Proc Natl Acad Sci USA 116, 4037–4043.

Naganathan AN (2019) Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 54, 1–9.

Rajasekaran N & Naganathan AN (2017) A self‐consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins. Biochem J 474, 2379–2388.

Rajasekaran N, Sekhar A & Naganathan AN (2017) A universal pattern in the percolation and dissipation of protein structural perturbations. J Phys Chem Lett 8, 4779–4784.

Naganathan AN, Dani R, Gopi S, Aranganathan A & Narayan A (2021) Folding intermediates, heterogeneous native ensembles and protein function. J Mol Biol 433, 167325.

Rajasekaran N, Suresh S, Gopi S, Raman K & Naganathan AN (2017) A general mechanism for the propagation of mutational effects in proteins. Biochemistry 56, 294–305.

Pacheco‐Garcia JL, Loginov DS, Anoz‐Carbonell E, Vankova P, Palomino‐Morales R, Salido E, Man P, Medina M, Naganathan AN & Pey AL (2022) Allosteric communication in the multifunctional and redox NQO1 protein studied by cavity‐making mutations. Antioxidants 11, 1110.

Medina‐Carmona E, Betancor‐Fernández I, Santos J, Mesa‐Torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S et al. (2019) Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Hum Mol Genet 28, 1–15.

Pacheco‐Garcia JL, Anoz‐Carbonell E, Vankova P, Kannan A, Palomino‐Morales R, Mesa‐Torres N, Salido E, Man P, Medina M, Naganathan AN et al. (2021) Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 46, 102112.

Pacheco‐García JL, Cano‐Muñoz M, Sánchez‐Ramos I, Salido E & Pey AL (2020) Naturally‐occurring rare mutations cause mild to catastrophic effects in the multifunctional and cancer‐associated NQO1 protein. J Pers Med 10, 207.

Pacheco‐Garcia JL, Anoz‐Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino‐Morales R & Pey AL (2022) Different phenotypic outcome due to site‐specific phosphorylation in the cancer‐associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 729, 109392.

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V & Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520.

Pérez‐Mejías G, Velázquez‐Cruz A, Guerra‐Castellano A, Baños‐Jaime B, Díaz‐Quintana A, González‐Arzola K, Ángel De la Rosa M & Díaz‐Moreno I (2020) Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 18, 1852–1863.

Miranda FF, Teigen K, Thórólfsson M, Svebak RM, Knappskog PM, Flatmark T & Martínez A (2002) Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects. J Biol Chem 277, 40937–40943.

Pearlman SM, Serber Z & Ferrell JE (2011) A mechanism for the evolution of phosphorylation sites. Cell 147, 934–946.

Bitirim CV, Tuncay E & Turan B (2018) Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Mol Cell Biochem 443, 25–36.

Spriggs CC (2023) Viruses unveil the mechanisms of nuclear entry. Nat Rev Microbiol 21, 632.

Kalderon D, Roberts BL, Richardson WD & Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.

Koushki N, Ghagre A, Srivastava LK, Molter C & Ehrlicher AJ (2023) Nuclear compression regulates YAP spatiotemporal fluctuations in living cells. Proc Natl Acad Sci USA 120, 2826–2835.

Wubben JM, Atkinson SC & Borg NA (2020) The role of protein disorder in nuclear transport and in its subversion by viruses. Cells 9, 2654.

Pey AL, Salido E & Sanchez‐Ruiz JM (2011) Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids 41, 1233–1245.

Gao K, Oerlemans R & Groves MR (2020) Theory and applications of differential scanning fluorimetry in early‐stage drug discovery. Biophys Rev 12, 85–104.

Martin‐Malpartida P, Hausvik E, Underhaug J, Torner C, Martinez A & Macias MJ (2022) HTSDSF explorer, a novel tool to analyze high‐throughput DSF screenings. J Mol Biol 434, 167372.

Cremades N, Velázquez‐Campoy A, Martínez‐Júlvez M, Neira JL, Pérez‐Dorado I, Hermoso J, Jiménez P, Lanas A, Hoffman PS & Sancho J (2009) Discovery of specific flavodoxin inhibitors as potential therapeutic agents against helicobacter pylori infection. ACS Chem Biol 4, 928–938.

Pacheco‐García JL, Anoz‐Carbonell E, Loginov DS, Kavan D, Salido E, Man P, Medina M & Pey AL (2023) Counterintuitive structural and functional effects due to naturally occurring mutations targeting the active site of the disease‐associated NQO1 enzyme. FEBS J 290, 1855–1873.

Pacheco‐Garcia JL, Loginov D, Rizzuti B, Vankova P, Neira JL, Kavan D, Mesa‐Torres N, Guzzi R, Man P & Pey AL (2022) A single evolutionarily divergent mutation determines the different FAD‐binding affinities of human and rat NQO1 due to site‐specific phosphorylation. FEBS Lett 596, 29–41.

Muñoz IG, Morel B, Medina‐Carmona E & Pey AL (2017) A mechanism for cancer‐associated inactivation of NQO1 due to P187S and its reactivation by the consensus mutation H80R. FEBS Lett 591, 2826–2835.

Medina‐Carmona E, Rizzuti B, Martín‐Escolano R, Pacheco‐García JL, Mesa‐Torres N, Neira JL, Guzzi R & Pey AL (2019) Phosphorylation compromises FAD binding and intracellular stability of wild‐type and cancer‐associated NQO1: insights into flavo‐proteome stability. Int J Biol Macromol 125, 1275–1288.

Sánchez‐Ruiz JM, López‐Lacomba JL, Cortijo M & Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27, 1648–1652.

Rodriguez‐Larrea D, Minning S, Borchert TV & Sanchez‐Ruiz JM (2006) Role of solvation barriers in protein kinetic stability. J Mol Biol 360, 715–724.

Friedler A, Veprintsev DB, Hansson LO & Fersht AR (2003) Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem 278, 24108–24112.

Conejero‐Lara F, Mateo PL, Aviles FX & Sanchez‐Ruiz JM (1991) Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry 30, 2067–2072.

Pey A, Majtan T, Sanchez‐Ruiz J & Kraus J (2012) Human cystathionine beta‐synthase (CBS) contains two classes of binding sites for S‐adenosyl‐L‐methionine (SAM): complex regulation of CBS activity and stability by SAM. Biochem J 121, 109–121.

Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B et al. (2019) Human stress‐inducible Hsp70 has a high propensity to form ATP‐dependent antiparallel dimers that are differentially regulated by Cochaperone binding*. Mol Cell Proteomics 18, 320–337.

Kavan D & Man P (2011) MSTools – web based application for visualization and presentation of HXMS data. Int J Mass Spectrom 302, 53–58.

Cliff MJ, Bowler MW, Varga A, Marston JP, Szabó J, Hounslow AM, Baxter NJ, Blackburn GM, Vas M & Waltho JP (2010) Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. J Am Chem Soc 132, 6507–6516.

Krieger E, Koraimann G & Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA – a self‐parameterizing force field. Proteins 47, 393–402.

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H & Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103, 8577–8593.

Krieger E & Vriend G (2014) YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30, 2981–2982.

Fraczkiewicz R & Braun W (1998) X‐ray crystal structure of APP. J Comput Chem 19, 319333.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...